7 fundamental transistor amplifier configurations
play

7. Fundamental Transistor Amplifier Configurations Lecture notes: - PowerPoint PPT Presentation

7. Fundamental Transistor Amplifier Configurations Lecture notes: Sec. 5 Sedra & Smith (6 th Ed): Sec. 5.4, 5.6 & 6.3-6.4 Sedra & Smith (5 th Ed): Sec. 4.4, 4.6 & 5.3-5.4 ECE 65, Winter2013, F. Najmabadi Issues in developing a


  1. 7. Fundamental Transistor Amplifier Configurations Lecture notes: Sec. 5 Sedra & Smith (6 th Ed): Sec. 5.4, 5.6 & 6.3-6.4 Sedra & Smith (5 th Ed): Sec. 4.4, 4.6 & 5.3-5.4 ECE 65, Winter2013, F. Najmabadi

  2. Issues in developing a transistor amplifier: 1. Find the iv characteristics of the elements for the signal (which can be different than their characteristics equation for bias). o This will lead to different circuit configurations for bias versus signal 2. Compute circuit response to the signal o Focus on fundamental transistor amplifier configurations 3. How to establish a Bias point (bias is the state of the system when there is no signal). o Stable and robust bias point should be resilient to variations in µ n C ox (W/L),V t (or β for BJT) due to temperature and/or manufacturing variability. o Bias point details impact small signal response (e.g., gain of the amplifier). F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (2/26)

  3. What are amplifier parameters? v A = Voltage Gain of the Circuit : o v sig v A = o Voltage Gain of the Amplifier : v v i v = o Open - loop Gain : A vo v → ∞ i R L v R = i Input Resistance : i i i v = − Output Resistance of Amplifier : o R o i → o 0 v Output resistance is the Thevenin sig resistance between the output terminals!  In general R i depends on R L and R o depends on R sig F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (3/26)

  4. Observations on the amplifier parameters Overall Gain : v v v R = = × = o i o i A A + v v v v R R sig sig i i sig v R v R = = = i i o L A A + + v vo v R R v R R sig i sig i L o  A vo is the maximum possible gain  Value of R i is important. of the amplifier. o For R i >> R i , v i ≈ v sig  Value of R o is important. o For R i = R sig , v i = 0.5 v sig o For R o << R L , A v ≈ A vo o For R i << R sig , v i ≈ 0 o For R o = R L , A v = 0.5 A vo Prefer “large” R i  o For R o >> R L , A v ≈ 0 Prefer “small” R o  F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (4/26)

  5. Some observation on single-transistor amplifiers 1. A s we will discuss, there are many ways to bias a transistor. Thus, there are many practical single-transistor amplifier circuits. o Fortunately, signal circuits always reduce to one of four fundamental configuration . 2. We compute the voltage gain and input resistance of these four fundamental configurations in the presence of an arbitrary load R L . Then: Overall Gain : Open - loop Gain : = | v v v R A A = = × = → ∞ o i o i vo v R A A L + v v v v R R sig sig i i sig 3. R o is calculated in a real circuit (with R sig & v sig ) once load is clearly identified. F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (5/26)

  6. Fundamental Transistor Amplifier Configurations We are considering only signal circuit here! F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (6/26)

  7. Possible BJT amplifier configurations Common-Base Common-Emitter Common-Collector Common-Emitter with R E Same as Common Base (v i does not change) Not Useful F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (7/26)

  8. PNP configurations are the same as those of NPN (because of similar small-signal model) Common-Emitter Common-Base Common-Collector Common-Emitter Common-Base Common-Collector F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (8/26)

  9. MOS fundamental configurations are analogous to BJTs Common-Emitter Common-Base Common-Collector Common-Source Common-Gate Common-Drain F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (9/26)

  10. Common Emitter Configuration Signal Circuit: Signal Circuit with BJT SSM: o r o and R’ L are in parallel o v π = v i F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (10/26)

  11. Common Emitter Configuration ( A v & R i ) By KCL ′ = − ( || ) v v v g v r R = ⇒ = = i i o m i o L i R r π i i r i v π ′ = = − i o ( || ) A g r R v m o L v i F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (11/26)

  12. Common Source Configuration Signal Circuit: Signal Circuit with MOS SSM: o r o and R’ L are in parallel o v gs = v i F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (12/26)

  13. Common Source Configuration ( A v & R i ) By KCL ′ = − ( || ) v v g v r R = ⇒ = = ∞ i o m i o L 0 i R i i i v ′ = = − i o ( || ) A g r R v m o L v i F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (13/26)

  14. Common Source & Common Emitter Configurations are “similar” Signal Circuit Signal Circuit with transistor SSM v v ′ ′ = = − = = − o o ( || ) ( || ) A g r R A g r R Similar formula if v m o L v m o L → ∞ v v r we let i i π = = ∞ R r R π i i Note that A v & R i are independent of v sig & R sig F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (14/26)

  15. Common Emitter Configuration with R E Signal Circuit: Signal Circuit with BJT SSM: F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (15/26)

  16. Common Emitter Configuration with R E ( A v & R i ) Node voltage method : 1. Add the two node equations to get = − v v v π v e in terms of v o and v i i e − − v v v v v 2. Substitute for v e in Node v o Node v e + + − − = e e i e o ( ) 0 g v v m i e equation to find v o and gain R r r π E o 3. Compute i i in terms of node − v v v Node v o + + − = o o e ( ) 0 g v v voltages. Then R i = v i /i i ′ m i e R r L o 4. Lengthy calculations (See Notes). ′ v g R g r R = ≈ − ≈ + π o m L m E A R r π ′ ′ + + + + + v i 1 ( / )( 1 / ) 1 ( / )( 1 / ) v g R R r R r R r R r π π i m E L o E L o E F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (16/26)

  17. Common Source Configuration with R S ( A v & R i ) Signal Circuit ′ v g R = ≈ − ′ o m L A v g R ′ = ≈ − + + + v o m L 1 ( / )( 1 / ) A v g R R r R r π ′ + + v i m E L o E 1 ( / ) v g R R r i m S L o g r R ≈ + π = ∞ m E R r R π ′ + + i i 1 ( / )( 1 / ) R r R r π L o E → ∞ r Let π → R R E S F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (17/26)

  18. Common Base Configuration (Gain) Signal Circuit: Node voltage method: = − v v π i − v v v + + − = Node v o o o i ( ) 0 g v ′ m i R r L o + 1 v g r = o m o v Signal Circuit with BJT SSM: ′ i || r R r o L o + 1 v g r ′ = = o m o ( || ) A r R v o L v r i o ′ ≈ ( || ) A g r R v m o L F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (18/26)

  19. Common Base Configuration ( R i ) v = i Define R x i x v v v v = + = + = KCL: i i i i i i i x || r r R r R π π π x x v = = i || R r R π i x i i ′ = + + ( ) KVL: v i g v r i R By KCL π i x m o x L = − v v π i ′ + = + ( 1 ) ( ) v g r i r R i m o x o L ′ + v r R = = i o R + x 1 i g r x m o ′ + r R = = || || o L R r R r π π + i x 1 g r m o F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (19/26)

  20. Common Gate Configuration ( A v & R i ) Signal Circuit v v ′ ′ = ≈ = ≈ o ( || ) o ( || ) A g r R A g r R v m o L v m o L v v → ∞ i i r Let π ′ ′ + + r R r R = = || o L o L R r R π + + i i 1 1 g r g r m o m o F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (20/26)

  21. Common Collector Configuration (Emitter Follower) Signal Circuit: Node voltage method: = − v v v π i o − v v v v Node v o + + − − = o o i o ( ) 0 g v v ′ m i o R r r π L o  +   +  1 1 v     + = ≈ o 1 1 v g v g v     ′ o m i m i ||     r R g r g r π π o L m m = β >> 1 g m r π Signal Circuit with BJT SSM: ′ ( || ) v g r R = = o m o L A ′ + v 1 ( || ) v g r R i m o L − v v v = = × − i o i ( 1 ) i A i v r r π π v r = = π i R − i 1 i A i v ′ ′ = + = + β ( || ) ( || ) R r g r r R r r R π π π i m o L o L F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (21/26)

  22. Common Drain Configuration (Source Follower) Signal Circuit ′ ′ ( || ) v g r R ( || ) v g r R = = o m o L = = A o m o L A ′ + v → ∞ ′ 1 ( || ) + v g r R v r 1 ( || ) Let v g r R π i m o L i m o L = ∞ ′ ′ = = β R ( || ) ( || ) R g r r R r R i π i m o L o L F. Najmabadi, ECE65, Winter 2013, Fundamental Amp Configuration (22/26)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend