15 082j and 6 855j and esd 78j
play

15.082J and 6.855J and ESD.78J Lagrangian Relaxation 2 - PowerPoint PPT Presentation

15.082J and 6.855J and ESD.78J Lagrangian Relaxation 2 Applications Algorithms Theory The Constrained Shortest Path Problem (1,1) 2 4 (1,10) (1,7) (2,3) 1 6 (1,2) (10,1) (5,7) (2,2) (10,3) 5 3 (12,3) Find the


  1. 15.082J and 6.855J and ESD.78J Lagrangian Relaxation 2 • Applications Algorithms • • Theory

  2. The Constrained Shortest Path Problem (1,1) 2 4 (1,10) (1,7) (2,3) 1 6 (1,2) (10,1) (5,7) (2,2) (10,3) 5 3 (12,3) Find the shortest path from node 1 to node 6 with a transit time at most 14. 2

  3. Constrained Shortest Paths: Path Formulation Given: a network G = (N,A) w ij cost for arc (i,j) w(P) cost of path P t ij traversal time for arc (i,j) T upper bound on transit times. t(P) traversal time for path P P set of paths from node 1 to node n Min w(P) w(P) + u (t(P) – T) L(u) = Min t(P) ≤ T s.t. P ∈ P s.t. P ∈ P Lagrangian Constrained Problem 3

  4. The Lagrangian Multiplier Problem Step 0. Formulate L(u) = Min w(P) + u t(P) - uT the Lagrangian P ∈ P s.t. Problem. L(u) = v* = Max v Step 1. Rewrite as s.t v ≤ w(P) + u t(P) – uT a maximization for all P ∈ P problem L* = max {L(u): u ≥ 0} = Step 2. Write the = Max v Lagrangian s.t v ≤ w(P) + u t(P) – u T multiplier problem for all P ∈ P u ≥ 0 4

  5. Max { v: v ≤ w(P) + u t(P) – uT ∀ P ∈ P , u ≥ 0} -uT + Min { w(P) + u t(P) : P ∈ P }  P* = Path(u) Per u fissato  Path(u) cammino minimo con pesi modificati Ogni arco ij ha peso: w ij + u t ij (w, t) (1,1) u = 0  w ij 2 4 (1,10) (1,7) u = M>>0  w ij + M t ij (2,3) u = 2.1  1 6 (10,1) (1,2) 3.1 2 4 (2,2) (10,3) (5,7) 15.7 22 8.3 5 3 (12,3) 5.2 1 6 12.1 Per ogni u una diversa istanza 16.3 6.2 19.7 del cammino minimo 5 3 18.3

  6. Discretizzazione del problema lagrangiano Ogni soluzione (cammino) definisce un iperpiano (retta) 1-3-4-6 t(P)=17 (1,1) 2 4 Paths (1,10) (1,7) (2,3) 30 1 6 (10,1) Composite Cost 20 (1,2) 1-3-4-5-6 t(P)=13 10 (2,2) (10,3) (5,7) 5 3 0 (12,3) (1,1) -10 2 4 0 1 2 3 4 5 (1,10) (1,7) (2,3) Lagrange Multiplier u w(P) + u (t(P) – T) 1 6 (10,1) (1,2) 27 + u (13 – 14) [ pendenza neg] (2,2) (10,3) (5,7) 5 16 + u (17 – 14) [ pendenza pos] 3 (12,3)

  7. Max { v: v ≤ w(P) + u t(P) – uT ∀ P ∈ P , and u ≥ 0} Paths 1-3-4-6 t(P)=17 30 1-2-4-6 Composite Cost 20 1-3-4-5-6 t(P)=13 1-2-4-5-6 1-2-5-6 10 1-3-2-4-6 0 1-3-2-4-5-6 1-3-2-5-6 L* = max (L(u): u ≥ 0) 1-3-5-6 -10 0 1 2 3 4 5 Lagrange Multiplier u Figure 16.3 The Lagrangian function for T = 14. 7

  8. The Restricted Lagrangian P P : the set of paths from node 1 to node n B ⊆ P P : a subset of paths B L * L* = v* = max u,v v B = max u,v v s.t v ≤ w(P) + u ( t(P) – T ) s.t v ≤ w(P) + u t(P) – u T for all P ∈ P for all P ∈ B u ≥ 0 u ≥ 0 Restricted Lagrangian Lagrangian Multiplier Problem Multiplier Problem If L(u) = L * L(u) ≤ L* ≤ L * B then L(u) = L*. B Optimality Conditions 8

  9. Constraint Generation for Finding L* Let Path(u) be the path that optimizes L(u). Path(u) = w(P*) + u t(P*) Let u(B) be the value of u that optimizes L B (u). M is some large number Initialize: B := {Path(0), Path(M)} Yes Quit. L(u(B)) = L* Is L(u(B)) = L* B ? No B := B ∪ Path(u(B)) 9

  10. We start with the paths 1-2-4-6, and 1-3-5-6 which are optimal for L(0) and L( ∞). Paths 30 (u(B), v(B)) 1-2-4-6 Composite Cost 20 3 + (18-14) u  Path(0) (2.1, 11.4) 10 24 + (8-14) u  Path(M) 0 1-3-5-6 -10 0 1 2 3 4 5 Lagrange Multiplier u 10

  11. Set u(B) = 2.1 and solve the shortest path problem (L(u(B) ) The optimum path is 1-3-2-5-6 Tempo di costante Costo transito 3.2 15 + 10 u(B) – 14 u(B) 2 4 15.7 22 8.3 u(B) = 2.1 15 + 21 – 29.4 = 6.6 12.1 5.2 6 1 19.7 16.3 6.2 5 3 18.3 6.6 < 11.4 Aggiungi il path a B e riottimizza 11

  12. Path(2.1) = 1-3-2-5-6. Add it to S and reoptimize. Paths 30 3 + 4 u 1-2-4-6 Composite Cost 20 10 1.5, 9 0 15 - 4 u 1-3-2-5-6 24 - 6 u 1-3-5-6 -10 0 1 2 3 4 5 Lagrange Multiplier u 12

  13. Set u(B) = 1.5 and solve the constrained shortest path problem The optimum path is 1-2-5-6. 2.5 5 + 15 u(B) – 14 u(B) 2 4 11.5 5 + 22.5 – 21 = 6.5 16 6.5 11.5 4 1 6 15.5 14.5 5 5 3 16.5 6.5 < 9 Aggiungi il path a B e riottimizza 13

  14. Add Path 1-2-5-6 and reoptimize Paths 30 3 + 4 u 1-2-4-6 Composite Cost 20 5 + u 1-2-5-6 10 2, 7 0 15 - 4 u 1-3-2-5-6 24 - 6 u 1-3-5-6 -10 0 1 2 3 4 5 Lagrange Multiplier u 14

  15. Set u(B) = 2 and solve the constrained shortest path problem The optimum paths are 1-2-5-6 and 1-3-2-5-6 3 5 + 15 u(B) – 14 u(B) 2 4 15 21 8 5 + 30 – 28 = 7 12 5 1 6 19 16 6 5 3 18 Ottimo del Duale 7 = v(B) = 7 Lagrangiano 15

  16. There are no new paths to add. u(B) = u* is optimal for the multiplier problem Paths 30 3 + 4 u 1-2-4-6 Composite Cost 20 5 + u 1-2-5-6 10 2, 7 0 15 - 4 u 1-3-2-5-6 24 - 6 u 1-3-5-6 -10 0 1 2 3 4 5 Lagrange Multiplier u 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend