nouveaux d eveloppements sur freefem et hpddm
play

Nouveaux d eveloppements sur FreeFem++ et HPDDM Fr ed eric Nataf - PowerPoint PPT Presentation

Nouveaux d eveloppements sur FreeFem++ et HPDDM Fr ed eric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Ryadh Haferssas (LJLL-Alpines) Victorita Dolean (University of Nice) Fr ed eric Hecht


  1. Nouveaux d´ eveloppements sur FreeFem++ et HPDDM Fr´ ed´ eric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Ryadh Haferssas (LJLL-Alpines) Victorita Dolean (University of Nice) Fr´ ed´ eric Hecht (LJLL-Alpines) Pierre Jolivet (LJLL-Alpines now CNRS, IRIT, ENSEEIHT) Nicole Spillane (LJLL-Alpines now CNRS at CMAP) Pierre-Henri Tournier (LJLL-Alpines) Colloque Couplages Num´ eriques – Nice

  2. Outline Overview 1 Restricted Additive Schwarz Methods 2 Optimized Restricted Additive Schwarz Methods 3 SORAS-GenEO-2 coarse space 4 5 Numerical Results with FreeFem++ 6 Conclusion F. Nataf SORAS 2 / 42

  3. Framework: Scientific computing Applications: Large discretized system of PDEs flow in heterogeneous / strongly heterogeneous coefficients stochastic / layered media (high contrast, multiscale) structural mechanics electromagnetics etc. E.g. Darcy pressure equation, P 1 -finite elements: Au = f cond ( A ) ∼ κ max h − 2 κ min Goal: Parallel iterative solvers robust in size and heterogeneities 80% of the elapsed time for typical engineering applications F. Nataf SORAS 3 / 42

  4. 10 3 10 5 3 GHz 1 P 10 T 100 G 1 G 10 k 100 Frequency (Hz) # of transistors 10 9 10 7 Need to Go Parallel Since year 2004: CPU frequency stalls at 2-3 GHz due to the heat dissipation wall. The only way to improve the performance of computer is to go parallel Credits: http://download.intel.com/ pressroom/kits/IntelProcessorHistory.pdf 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 F. Nataf SORAS 4 / 42

  5. A u = f ? Panorama of parallel linear solvers Multi-frontal sparse direct solver (I. Duff et al.) MUMPS (J.Y. L ’Excellent), SuperLU (Demmel, . . . ), PastiX, UMFPACK, PARDISO (O. Schenk), Iterative Methods Fixed point iteration: Jacobi, Gauss-Seidel, SSOR Krylov type methods: Conjuguate Gradient (Stiefel-Hestenes), GMRES (Y. Saad), QMR (R. Freund), MinRes, BiCGSTAB (van der Vorst) ”Hybrid Methods” Multigrid (A. Brandt, Ruge-St¨ uben, Falgout, McCormick, A. Ruhe, Y. Notay, . . . ) Domain decomposition methods (O. Widlund, C. Farhat, J. Mandel, P .L. Lions, ) are a naturally parallel compromise F. Nataf SORAS 5 / 42

  6. Outline Overview 1 Restricted Additive Schwarz Methods 2 Optimized Restricted Additive Schwarz Methods 3 SORAS-GenEO-2 coarse space 4 5 Numerical Results with FreeFem++ 6 Conclusion F. Nataf SORAS 6 / 42

  7. An introduction to Additive Schwarz Consider the discretized Poisson problem: Au = f ∈ R n . Given a decomposition of � 1 ; n � , ( N 1 , N 2 ) , define: the restriction operator R i from R � 1 ; n � into R N i , R T i as the extension by 0 from R N i into R � 1 ; n � . u m − → u m + 1 by solving concurrently: u m + 1 = u m 1 + A − 1 1 R 1 ( f − Au m ) u m + 1 = u m 2 + A − 1 2 R 2 ( f − Au m ) 1 2 = R i u m and A i := R i AR T where u m i . i Ω F. Nataf SORAS 7 / 42

  8. An introduction to Additive Schwarz Consider the discretized Poisson problem: Au = f ∈ R n . Given a decomposition of � 1 ; n � , ( N 1 , N 2 ) , define: the restriction operator R i from R � 1 ; n � into R N i , R T i as the extension by 0 from R N i into R � 1 ; n � . u m − → u m + 1 by solving concurrently: u m + 1 = u m 1 + A − 1 1 R 1 ( f − Au m ) u m + 1 = u m 2 + A − 1 2 R 2 ( f − Au m ) 1 2 = R i u m and A i := R i AR T where u m i . i Ω 1 Ω 2 F. Nataf SORAS 7 / 42

  9. An introduction to Additive Schwarz Consider the discretized Poisson problem: Au = f ∈ R n . Given a decomposition of � 1 ; n � , ( N 1 , N 2 ) , define: the restriction operator R i from R � 1 ; n � into R N i , R T i as the extension by 0 from R N i into R � 1 ; n � . u m − → u m + 1 by solving concurrently: u m + 1 = u m 1 + A − 1 1 R 1 ( f − Au m ) u m + 1 = u m 2 + A − 1 2 R 2 ( f − Au m ) 1 2 = R i u m and A i := R i AR T where u m i . i Ω 1 Ω 2 F. Nataf SORAS 7 / 42

  10. An introduction to Additive Schwarz II We have effectively divided, but we have yet to conquer. Duplicated unknowns coupled via a partition of unity : N � R T I = i D i R i . i = 1 1 1 1 1 2 2 N N Then, u m + 1 = � R T i D i u m + 1 M − 1 � R T i D i A − 1 . RAS = R i . i i i = 1 i = 1 RAS algorithm (Cai & Sarkis, 1999) F. Nataf SORAS 8 / 42

  11. An introduction to Additive Schwarz II We have effectively divided, but we have yet to conquer. Duplicated unknowns coupled via a partition of unity : N � R T I = i D i R i . i = 1 1 1 1 1 2 2 N N Then, u m + 1 = � R T i D i u m + 1 M − 1 � R T i D i A − 1 . RAS = R i . i i i = 1 i = 1 RAS algorithm (Cai & Sarkis, 1999) F. Nataf SORAS 8 / 42

  12. An introduction to Additive Schwarz II We have effectively divided, but we have yet to conquer. Duplicated unknowns coupled via a partition of unity : N � R T I = i D i R i . i = 1 1 1 1 1 2 2 N N Then, u m + 1 = � R T i D i u m + 1 M − 1 � R T i D i A − 1 . RAS = R i . i i i = 1 i = 1 RAS algorithm (Cai & Sarkis, 1999) F. Nataf SORAS 8 / 42

  13. Outline Overview 1 Restricted Additive Schwarz Methods 2 Optimized Restricted Additive Schwarz Methods 3 SORAS-GenEO-2 coarse space 4 5 Numerical Results with FreeFem++ 6 Conclusion F. Nataf SORAS 9 / 42

  14. P .L. Lions’ Algorithm (1988) − ∆( u n + 1 ) = f in Ω 1 , 1 u n + 1 = 0 on ∂ Ω 1 ∩ ∂ Ω , 1 ( ∂ ) = ( − ∂ + α )( u n + 1 + α )( u n 2 ) on ∂ Ω 1 ∩ Ω 2 , 1 ∂ n 1 ∂ n 2 ( n 1 and n 2 are the outward normal on the boundary of the subdomains) − ∆( u n + 1 ) = f in Ω 2 , 2 u n + 1 = 0 on ∂ Ω 2 ∩ ∂ Ω 2 ( ∂ ) = ( − ∂ + α )( u n + 1 + α )( u n 1 ) on ∂ Ω 2 ∩ Ω 1 . 2 ∂ n 2 ∂ n 1 with α > 0. Overlap is not necessary for convergence. Parameter α can be optimized for. Extended to the Helmholtz equation (B. Despr` es, 1991) a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998. F. Nataf SORAS 10 / 42

  15. ORAS: Optimized RAS P .L. Lions algorithm at the continuous level (partial 1 differential equation) Algebraic formulation for overlapping subdomains ⇒ Let B i 2 be the matrix of the Robin subproblem in each subdomain 1 ≤ i ≤ N , define M − 1 ORAS := � N i D i B − 1 i = 1 R T R i , Optimized i multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007 Symmetric variant ⇒ 3 M − 1 OAS := � N i B − 1 i = 1 R T R i (Natural but K.O.) 1 i SORAS := � N M − 1 i D i B − 1 i = 1 R T D i R i (O.K.) 2 i Adaptive Coarse space with prescribed targeted 4 convergence rate ⇒ ??? F. Nataf SORAS 11 / 42

  16. ORAS: Optimized RAS P .L. Lions algorithm at the continuous level (partial 1 differential equation) Algebraic formulation for overlapping subdomains ⇒ Let B i 2 be the matrix of the Robin subproblem in each subdomain 1 ≤ i ≤ N , define M − 1 ORAS := � N i D i B − 1 i = 1 R T R i , Optimized i multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007 Symmetric variant ⇒ 3 M − 1 OAS := � N i B − 1 i = 1 R T R i (Natural but K.O.) 1 i SORAS := � N M − 1 i D i B − 1 i = 1 R T D i R i (O.K.) 2 i Adaptive Coarse space with prescribed targeted 4 convergence rate ⇒ ??? F. Nataf SORAS 11 / 42

  17. ORAS: Optimized RAS P .L. Lions algorithm at the continuous level (partial 1 differential equation) Algebraic formulation for overlapping subdomains ⇒ Let B i 2 be the matrix of the Robin subproblem in each subdomain 1 ≤ i ≤ N , define M − 1 ORAS := � N i D i B − 1 i = 1 R T R i , Optimized i multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007 Symmetric variant ⇒ 3 M − 1 OAS := � N i B − 1 i = 1 R T R i (Natural but K.O.) 1 i SORAS := � N M − 1 i D i B − 1 i = 1 R T D i R i (O.K.) 2 i Adaptive Coarse space with prescribed targeted 4 convergence rate ⇒ ??? F. Nataf SORAS 11 / 42

  18. ORAS: Optimized RAS P .L. Lions algorithm at the continuous level (partial 1 differential equation) Algebraic formulation for overlapping subdomains ⇒ Let B i 2 be the matrix of the Robin subproblem in each subdomain 1 ≤ i ≤ N , define M − 1 ORAS := � N i D i B − 1 i = 1 R T R i , Optimized i multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007 Symmetric variant ⇒ 3 M − 1 OAS := � N i B − 1 i = 1 R T R i (Natural but K.O.) 1 i SORAS := � N M − 1 i D i B − 1 i = 1 R T D i R i (O.K.) 2 i Adaptive Coarse space with prescribed targeted 4 convergence rate ⇒ ??? F. Nataf SORAS 11 / 42

  19. ORAS: Optimized RAS P .L. Lions algorithm at the continuous level (partial 1 differential equation) Algebraic formulation for overlapping subdomains ⇒ Let B i 2 be the matrix of the Robin subproblem in each subdomain 1 ≤ i ≤ N , define M − 1 ORAS := � N i D i B − 1 i = 1 R T R i , Optimized i multiplicative, additive, and restricted additive Schwarz preconditioning, St Cyr et al, 2007 Symmetric variant ⇒ 3 M − 1 OAS := � N i B − 1 i = 1 R T R i (Natural but K.O.) 1 i SORAS := � N M − 1 i D i B − 1 i = 1 R T D i R i (O.K.) 2 i Adaptive Coarse space with prescribed targeted 4 convergence rate ⇒ ??? F. Nataf SORAS 11 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend