what is important to know about lipids what can be
play

What is important to know about lipids? What can be measured? - PDF document

Structural studies of lipid systems Regine Willumeit Hamburg, 22.10.2012 Introduction What is important to know about lipids? What can be measured? Example for structure determination 1 Lipids are important for: Cells -> membranes As


  1. Structural studies of lipid systems Regine Willumeit Hamburg, 22.10.2012 Introduction What is important to know about lipids? What can be measured? Example for structure determination 1

  2. Lipids are important for: Cells -> membranes As co-factors or as HDL (lipoproteins) Joints Crystallisation in sensors Polymeric implants (MPC polymers) Biomembranes 2

  3. Lipids in Cells @Lehninger Biochemistry Composition of an Erythrocyte Membrane PE unknown PC unknown cell recognition PS apoptosis signal intra celluar signals @Lehninger Biochemistry 3

  4. Lipid Names Phospholipids = 4 letter code first two letter: chains last two letter: head group POPC: Palmitoyl-Oleoyl Phosphatidyl Cholin Structure of a Phospholipid PE PC PS 4

  5. Structure of a Phospholipid: Headgroups neutral neutral neutral neutral neutral negative charge negative charge Zeta Potential: Potential: Zeta PC = 0 PC = 0 PE = PE = - -25 25 PG = - PG = -60 mV 60 mV @Avanti Polar Lipids Phosphatidylcholine (Symmetric Fatty Acid) Biomembranes 1,2-Diacyl- sn -Glycero-3-Phosphocholine (Saturated Series) Carbon Trivial IUPAC M.W. Number 3:0 Propionoyl Trianoic 369.35 4:0 Butanoyl Tetranoic 397.41 5:0 Pentanoyl Pentanoic 425.46 6:0 Caproyl Hexanoic 453.51 7:0 Heptanoyl Heptanoic 481.57 8:0 Capryloyl Octanoic 509.62 9:0 Nonanoyl Nonanoic 537.67 10:0 Capryl Decanoic 565.73 11:0 Undecanoyl Undecanoic 593.78 12:0 Lauroyl Dodecanoic 621.84 13:0 Tridecanoyl Tridecanoic 649.89 14:0 Myristoyl Tetradecanoic 677.94 DM 15:0 Pentadecanoyl Pentadecanoic 706.00 DP 16:0 Palmitoyl Hexadecanoic 734.05 3,7,11,15-tetra 16:0 [(CH 3 ) 4 ] Phytanoyl 846.27 methylhexadecanoic 17:0 Heptadecanoyl Heptadecanoic 762.10 18:0 Stearoyl Octadecanoic 790.16 19:0 Nonadecanoyl Nonadecanoic 818.21 20:0 Arachidoyl Eicosanoic 846.27 21:0 Heniecosanoyl Heneicosanoic 874.32 22:0 Behenoyl Docosanoic 902.37 23:0 Trucisanoyl Trocosanoic 930.43 24:0 Lignoceroyl Tetracosanoic 958.48 5

  6. Phosphatidylcholine (Symmetric Fatty Acid) @Avanti Polar Lipids 1,2-Diacyl- sn -Glycero-3-Phosphocholine (Unsaturated Series) Biomembranes Carbon Number Trivial IUPAC M.W. 14:1 Myristoleoyl 9-cis-tetradecenoic 673.91 9-trans- 14:1 Myristelaidoyl 673.91 tetradecenoic 16:1 Palmitoleoyl 9-cis-hexadecenoic 730.02 9-trans- 16:1 Palmitelaidoyl 730.02 hexadecenoic 18:1 Petroselinoyl 6-cis-octadecenoic 786.13 18:1 Oleoyl 9-cis-octadecenoic 786.15 9-trans- 18:1 Elaidoyl 786.13 octadecenoic 9-cis-12-cis- 18:2 Linoleoyl 782.09 octadecadienoic 9-cis-12-cis-15- 18:3 Linolenoyl 778.06 cisoctadecatrienoic 20:1 Eicosenoyl 11-cis-eicosenoic 842.23 5,8,11,14(all -cis) 20:4 Arachidonoyl 830.14 eicosatetraenoic 22:1 Erucoyl 13-cis-docosenoic 898.34 4,7,10,13,16,19 (all DHA 22:6 -cis) 878.18 docosahexaenoic 15-cis- 24:1 Nervonoyl 954.45 tetracosenoic @Avanti Polar Lipids Phosphatidylcholine (Asymmetric Fatty Acid) Biomembranes 1-Acyl-2-Acyl- sn -Glycero-3-Phosphocholine Carbon 1-Acyl 2-Acyl M.W. Number 14:0-16:0 Myristoyl Palmitoyl 706.00 14:0-18:0 Myristoyl Stearoyl 734.05 PM 16:0-14:0 Palmitoyl Myristoyl 706.00 PS 16:0-18:0 Palmitoyl Stearoyl 762.10 PO 16:0-18:1 Palmitoyl Oleoyl 760.09 16:0-18:2 Palmitoyl Linoleoyl 758.07 16:0-20:4 Palmitoyl Arachidonoyl 782.09 16:0-22:6 Palmitoyl Docosahexaenoyl 806.12 18:0-14:0 Stearoyl Myristoyl 734.05 18:0-16:0 Stearoyl Palmitoyl 762.10 SO 18:0-18:1 Stearoyl Oleoyl 788.14 18:0-18:2 Stearoyl Linoleoyl 786.13 18:0-20:4 Stearoyl Arachidonoyl 810.15 18:0-22:6 Stearoyl Docosahexaenoyl 834.17 18:1-14:0 Oleoyl Myristoyl 732.03 18:1-16:0 Oleoyl Palmitoyl 760.09 18:1-18:0 Oleoyl Stearoyl 788.14 6

  7. Biomembranes @Lehninger Biochemistry Amphipatic Molecules in Solution hydrophilic hydrophobic CMC = CMC = critical micelle critical micelle concentration concentration increase of of concentration concentration increase highly diluted diluted system system highly @Lehninger Biochemistry 7

  8. Amphipatic Molecules in Solution POPC POPG inverse POPE DPPE, DPPC, POPC, POPE…. @Lehninger Biochemistry What can be measured? monoolein/water Martin Caffrey & Vadim Cherezov, Nat Protoc. 2009;4(5):706-31. 8

  9. What can be measured? Phase Behaviour of Phospholipids Data Base: LIPIDAT PO=Palmitoyl-oleoyl (16:0-18:1); DP=Dipalmitoyl (16:0) Lamellar Phase Repeat Distance d Bragg-equation: n   = 2d sin   = 2d· ·sin n 4  Q = 2 k 0 sin  = sin   Seddon Handbook of Biol Physics 1995 9

  10. Small Angle Scattering Scattering on on Small Angle Lipid Vesicles Vesicles also also is is Diffraction Diffraction Lipid Lipid unilamellar vesicle multilamellar vesicle SAS total ensemble Diffraction http://www.encapsula.com/products_01.html and Lehninger Biochemistry 1. Order Diffraction of POPG Membranes (Neutrons) Biomembranes Intensity q-value 10

  11. 1. Order Diffraction of POPG Membranes (Neutrons) Biomembranes Peaks equidistant Repeat distance = 2  / q Intensity Peak Distance = Repeat distance/n n = 1, 2, 3, 4,…. Intensities & Phases -> q-value Scattering length density profile 11

  12. Biomembranes (invers) hexagonal phase POPE Membrane (SAXS) Biomembranes (invers) hexagonal phase POPE Membrane (SAXS) Peaks NOT equidistant Repeat distance = 2  / q Peak distance = Repeat distance/n n = 1, 3, 2, 7, 3, 12, 13, … 12

  13. Cubic Phase Seddon Handbook of Biol Physics 1995 Cubic Phase Peaks NOT equidistant Repeat distance = 2  / q Peak distance = Repeat distance/n n = 1, 2, 3, 2, 5, 6, 8, 3, … Seddon Handbook of Biol Physics 1995 13

  14. Sample Preparation Solution of lipids in chloroform or methanol oder mixture Drying of solution to obtain a lipid film Hydratisation of the film with water / solvent Liposomes Liposomes Drying of vesicles solution on support Multilamellar Layers Layers Multilamellar Example for structure determination Peptide Antibiotics 'Infectious diseases are the leading cause of world-wide and third leading cause of death in the United States' J.M. Hughes, Director of NCID & CDC, 1999 Main problem: fast acquisition of antibiotic resistance by bacteria Possible alternative to 'classic' antibiotics: discovery of natural and synthetic antibiotic peptides Belong to the innate immune system in most species 14

  15. Peptide Antibiotics Biomembranes Melittin Magainins ( Xenopus laevis, Bombina variegata ) Thionine Cecropins Plant Defensines ( Hyalophora cecropia ) ( Heuchera sanguinea ) What is known about Peptide Antibiotics? 'Killing' mechanism: Destruction of cytoplasmic membrane of bacteria NO protein receptor! No resistance?? Hypothesis: physical interaction with the lipids of the membrane 15

  16. The peptide NK-2 NK-lysin Isolated from pig small intestine 78 aminoacids ca. 8.9 kDa 33% identity to a gene product (NKG5) from activated T and NK cell helix 3+4 = NK-2 (res. 39-65) Function: antibacterial, cytotoxic hydrophilic 5  -helices amphipathic hydrophobic 10 positive charges J. Andrä et al. Med Microbiol Immunol 188 (1999) 117-124 Common features features of of peptide peptide antibiotics antibiotics: : Common The peptide NK-2 small (15 small (15- -30 AA) 30 AA) highly amphipathic highly amphipathic NK-lysin Isolated from pig small intestine (positively positively) ) charged charged ( 78 aminoacids ca. 8.9 kDa NK- NK -2: 2: 33% identity to a gene product (NKG5) from activated T and NK cell  M) (MIC < 1  good antibacterial antibacterial activity activity (MIC < 1 M) good helix 3+4 = NK-2 (res. 39-65) Function: antibacterial, cytotoxic  M) (>> 10  little hemolytic hemolytic activity activity (>> 10 hydrophilic M) little 5  -helices amphipathic (>> 10   M) little cytotoxicity cytotoxicity (>> 10 M) little Can we Can we explain explain Selectivity Selectivity and and hydrophobic Mode of Action? ? Mode of Action 10 positive charges J. Andrä et al. Med Microbiol Immunol 188 (1999) 117-124 16

  17. Membrane Composition PG PE CL PC SM PS negative Gram-negative E.coli IM 6 82 12 0 0 0 S. typhimurium 33 60 7 0 0 0 P. cepacia 18 82 0 0 0 0 Gram-positive S.aureus 57 0 43 0 0 0 B. subtilis 29 10 47 0 0 0 C.albicans 0 70 0 4 15 11 Erythrocyte 0 30 0 33 24 13 PG = Phosphatidyl-glycerole PE = Phosphatidyl-ethanolamine CL = Cardiolipin PC = Phosphatidyl-choline SM = Sphingomyeline PS = Phosphatidyl-serine SAXS Results: POPC in 10 mM Na- Phosphate-Buffer, pH 7.4 17

  18. SAXS Results: DPPC in 10 mM Na- Phosphate-Buffer, pH 5.2 pH 5.2 SAXS Results: POPG in Water 18

  19. SAXS Results: POPG in Water DMPG (negative) - FTIR Stiffening Decrease of  = L  Increase of ordering L  DM=Dimyristoyl (14:0)  s (CH 2 ) = symmetric stretching vibration Willumeit et al. BBA 1669 (2005) 125 – 134 19

  20. SAXS Results: POPE in 10 mM Na-Phosphate-Buffer, pH 7.4 POPE + NK-2 (1000:1) POPE NK- -2 2 induces induces a negative a negative membrane membrane NK Influence of NK-2 on POPE curvature - curvature -> > breaking breaking of of the the membrane membrane! ! 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend