wavelets on the interval application to elasticity
play

WAVELETS ON THE INTERVAL APPLICATION TO ELASTICITY PROBLEMS 9 12 - PDF document

WAVELETS ON THE INTERVAL APPLICATION TO ELASTICITY PROBLEMS 9 12 April 2001 Marseille, France 3D o Dams (concrete) ARCH DAMS BUTTRESS DAMS 1. Introduction to the problems we study o the domain Ve o the surface


  1. WAVELETS ON THE INTERVAL APPLICATION TO ELASTICITY PROBLEMS 9 –12 April 2001 Marseille, France

  2. • 3D o Dams (concrete)

  3. ARCH DAMS BUTTRESS DAMS

  4. 1. Introduction to the problems we study o the domain Ve o the surface Γ divided in two complementary parts: o Dirichlet boundary Γ ue o Neumann boundary Γσ e EQUILIBRIUM COMPATIBILITY ELASTICITY CONDITIONS CONDITIONS CONDITIONS ν E E 1 σ = − ε + ε δ σ + = ε = + b j 0 ( u u ) on V e ij ij kk ij + υ + υ − υ ij , i ij i , j j , i 1 ( 1 )( 1 2 ) 2 + b = D σ 0 ε = f σ * = ε D u σ n = t u = u ij i j on Γ i i N σ = t u = u

  5. STRETCHING PLATES BENDING PLATES APPROXIMATION CRITERIA = ⋅ = ⋅ = ⋅ σ S X u U V q u U Γ q V Γ EQUILIBRIUM IN THE EQUILIBRIUM ON THE DOMAIN BOUNDARY ( ) ( ) ∫ ∫ T T + = − = U D σ b dV 0 U N σ t d Γ 0 V Γ σ V Γ σ ( ) ∫ T ( ) ∫ = T A DS U dV = A NS U d Γ V V Γ σ Γ Γ σ T = − A T A X Q = Q X V V Γ Γ

  6. COMPATIBILITY IN THE DOMAIN ( ) ( ) ∫ ∫ T T = − + e DS u.dV NS u.d Γ V Γ ( ) ∫ T * − = S ε D u dV 0 V = − + + e A q A q e V V Γ Γ ELASTICITY CONDITION ( ) ∫ t − = S ε f σ dV 0 V ∫ T fSdV = F S V e = FX

  7. GOVERNING SYSTEM   − F A A     X e V   Γ     T   ⋅ ⋅ = − A q Q     V V V     T − ⋅ ⋅   − A q Q       Γ Γ  Γ 

  8. 2. Why wavelets? Localization & Adaptability • Modeling singularities in tension (cracks, damage, …) What we look for in functions… • Hierarchical • Orthogonal • Fast computation and numerical analysis 2.1 What work was previously done? • The use of only scaling functions (Daubechies orthogonal wavelets) o Elasticity o Plasticity • Manipulation of the wavelets o Problems with the boundaries o Loss of orthogonality

  9. 2.2 Options • Wavelets on the Interval • Use of other wavelet systems even if not orthogonal 2.3 What we did… • Application of Daubechies orthogonal Wavelets on the Interval based on the works of: o A. Cohen, I. Daubechies and P. Vial; o V. Perrier and P. Monasse − + N 1 N 2 C ∑ ∑ ( ) ( ) ( ) Left Left Left Left φ = φ + φ x H x h x + + j , k k . l j 1 , k k , m j 1 , m = = l 0 m N ( ) ( ) Left j / 2 Left j φ = φ x 2 2 x • j . k 0 . k ( ) ( ) φ = j / 2 φ j − x 2 2 x m • j , m • C=2 k where k=0, …, N-1 (Cohen) • C=N-1 (Perrier) • Using numerical integration

  10. 3. Some results Problems • Stretching plates o Short Cantilever o Stressed stretching plate with central crack o L plate Approximations • Type 1: Scaling functions + wavelets • Type 2: Only scaling functions

  11. • Short Cantilever ( E = 1.0, ν ν ν = 0.3) ν 3 4 1,0 1 1 2 1,0 1,0 Mesh A Mesh B α v β ndf Problem Model nele N jo jx jv jg nnz spar 944 C T 2 Cdis 1 4 - 4 3 3 768 176 48196 0.8927 3072 608 3680 C T 2 Cdis1 1 4 - 5 4 4 186096 0.9727 3072 608 3680 C T 2 Cdis4 1 5 - 5 4 4 286054 0.9579 3072 608 3680 C T 2 Cdis7 1 6 - 5 4 4 415740 0.9388 3072 608 3680 C T 1 Cdis 1 4 3 4 3 3 38016 0.9946 3072 672 3744 C T 2 Cdis10 4 4 - 4 3 3 194176 0.9725 4 12288 2240 14528 246272 0.9977 C T 1 Cdis1 1 4 3 5 4 4 12288 2368 14656 741232 0.9931 C T 2 Cdis11 4 4 - 5 4 4 12288 8384 20672 783360 0.9963 C T 1 Cdis3 1 4 3 5 5 5 49152 8832 57984 2812224 0.9983 C T 2 Cdis12 4 4 - 6 5

  12. N = 4 JX=4, JV=3, JG=3 JX=5, JV=4, JG=4 JX=6, JV=5, JG=5 T2_CDIS 1 T2_CDIS 2 T2_CDIS 1 ELE NNZ=48 196, NNZ=186 096, NNZ=710 084, NDF= 944 NDF=3 680 NDF= 14 528 T2_CDIS 10 T2_CDIS 11 T2_CDIS 12 4 ELE NNZ=194 176, NNZ=741 232, NNZ=2 812 224, NDF= 3 744 NDF=14 656 NDF=57 984

  13. N = 4 N = 5 N = 6 JX=5, JV=4, JG=4 JX=5, JV=4, JG=4 JX=5, JV=4, JG=4 T2_CDIS 1 T2_CDIS 4 T2_CDIS 7 1 ELE NNZ=186 096, NNZ=286 054, NNZ=415 740, NDF=3 680 NDF=3 680 NDF=3 680

  14. N = 4 JX=4, JV=3, JG=3 JX=5, JV=4, JG=4 JX=6, JV=5, JG=5 T2_CDIS 1 T2_CDIS 2 T2_CDIS T 2 NNZ=48 196, NNZ=186 096, NNZ=710 084, NDF= 944 NDF=3 680 NDF= 14 528 JX=4, JV=3, JG=3 JX=5, JV=4, JG=4 T1_CDIS 1 T1_CDIS T 1 J0=3 NNZ=38 016, NNZ=246 272, NDF=13 680 NDF=14 528

  15. T1_CDIS σ xx σ yy σ xy T1_CDIS - MULTIRESOLUTION

  16. T1_CDIS3 σ xx σ yy σ xy T1_CDIS3 - MULTIRESOLUTION

  17. • Stressed stretching plate with central crack 3 4 3 4 1,25 1 2 0,2 1 2 0 , 2 1,0 α v β ndf Problem Model N jo jx jv jg nnz spar 14672 Crack T 2 T 4 - 5 4 4 12288 2384 740596 0.9931 14672 Crack T 1 T 4 3 4 3 3 12288 2384 153024 0.9986 58016 Crack T 1 T1 4 3 5 4 4 49152 8864 987648 0.9994 4 49152 33440 82592 3136000 0.9990 Crack T 1 T 2 4 3 5 5

  18. T2 T σ xx σ yy σ xy

  19. T1 T σ xx σ yy σ xy T1 T1 σ xx σ yy σ xy

  20. T1 T2 σ xx σ yy σ xy

  21. • L – stretching plate 2 3 a/ 2 2 3 1 a a/ 2 1 a α v β v β γ ndf Problem Model N jo jx jv jg nnz Spar 4 3 4 3 3 9216 1536 288 11040 114812 0.9981 L T 1 L L 2 4 3 5 5 4 36864 24576 576 62016 2352128 0.9987 L T 1

  22. T1_L T1_L2 DEFORMATION

  23. 4. Future work … • Wavelet related o Implementation of analytical integrations based on works of Beylkin, Dahmen and Michelli, and Perrier o Comparison between Cohen’s and Perrier’s Wavelets on the Interval o Study of other wavelet systems on the interval ! Orthogonal (Interacting boundary wavelet) ! Non orthogonal (bi-orthogonal, …) o Implementation of adaptive schemes o Physical non-linear analysis (Elastoplasticity, fracture and damage mechanics) o 3D models

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend