multiresolution analysis wavelets quick tutorial
play

Multiresolution analysis & wavelets (quick tutorial) - PowerPoint PPT Presentation

Multiresolution analysis & wavelets (quick tutorial) Application : image modeling Andr Jalobeanu Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets) Approximation a j at scale j


  1. Multiresolution analysis & wavelets (quick tutorial) Application : image modeling André Jalobeanu

  2. Multiresolution analysis Set of closed nested subspaces of j = scale, resolution = 2 -j (dyadic wavelets) Approximation a j at scale j : projection of f on V j Basis of V j at scale j ; l = spatial index 2

  3. Multiresolution decomposition Set of approximations and details k = subband index (orientation, etc.) Basis of W j k at scale j ; l = spatial index = wavelets 3

  4. Space / Frequency representation (wavelet basis functions) scale or spatial frequency space Compromise between spatial and frequential localization uncertainty principle …different wavelet shapes 4

  5. 1D wavelet basis • L 2 (R) Wavelet ψ : • || ψ || 2 = 1 • zero mean Dilations / shifts : Basis of L 2 (R) Scale function φ Multiresolution analysis [Mallat] Basis of V j : approximation at res. 2 -j 5

  6. 2D tensor product wavelet basis details approximations φ 2 φ 2 ψ 2 φ 2 φ 1 φ 1 ψ 1 φ 1 φ 2 ψ 2 ψ 2 ψ 2 imag e φ 1 ψ 1 ψ 1 ψ 1 6

  7. 2D Wavelet transform using filter banks In practice : discrete wavelet transform [Mallat,Vetterli] φ et ψ completely defined by the discrete filters h and g (a,d 1 ,d 2 ,d 3 ) at scale 2 -j  (a,d 1 ,d 2 ,d 3 ) at scale 2 -j-1 … a j+1 h  2 h  2 d 1 g  2 j+1 a j d 2 h  2 j+1 g  2 convolution decimation d 3 g  2 j+1 rows columns 7

  8. Wavelet transform tree j=0 j=1 j=2 j=3 8

  9. Wavelet packet transform tree j=0 j=1  decompose the detail subbands [Mallat] j=2 9

  10. Wavelet packet basis approximations details Wavelet packets φ 2 φ 2 φ 1 φ 1 ψ 1 φ 1 imag e φ 1 ψ 1 ψ 1 ψ 1 10

  11. Complex wavelet packets  Shift invariance  Directional selectivity Properties : Properties :  Perfect reconstruction  Fast algorithm O(N) • quad-tree (4 parallel wavelet trees) [Kingsbury 98] • filters shifted by ½ and ¼ pixel between trees • combination of trees  complex coefficients • biorthogonal wavelets • filter bank implementation 11

  12. Quad-tree : 1 st level a 1A d 1 a 1 d 1 1A 1 a 1B d 1 1B a 0 d 2 d 3 a 1C d 1 1A 1A 1C d 2 d 3 a 1D d 1 (image) 1B 1B 1D d 2 d 3 d 2 d 3 1C 1C 1 1 d 2 d 3 1D 1D Parallel trees ABCD Non-decimated transform A C A C A A A A B B B B B D B D A A C C A A C C Perfect B B D D B B D D A A C C A C C A A C A C reconstruction : B B B D D B D D A A C C A A C C mean B D B D B B D B B D D D C C C C (A+B+C+D)/4 D D D D 12

  13. Quad-tree : level j different length filters : h o , g o , h e , g e  shift < pixel a j+1,A h e  2 e a j+1,B h o  2 o a j+1,C h e  2 e h e  2 e a j+1,D h o  2 o d 1 h e g e  2 e  2 e j+1, d 1 h o g o  2 o  2 o a j,A j+1, d 1 h o g e  2 o  2 e A a j,B j+1, d 1 g o  2 o d 2 h e B  2 e a j,C j+1, j+1, d 2 g e h o C  2 e  2 o a j,A j+1, d 2 g e h e D  2 e  2 e A j+1, d 2 g o h o  2 o  2 o d 3 g e B  2 e j+1, g o j+1,  2 o d 3 g o C  2 o j+1, d 3 g e D  2 e A j+1, d 3 g o  2 o B j+1, C D 13

  14. Frequency plane partition 14

  15. Directional selectivity impulse responses – real part Complex wavelets Complex wavelet packets 15

  16. Why use wavelets ? 16

  17. Self-similarity of natural images : P1 (1) IMAGE Spectrum log w Energy w Power spectrum decay ? log r radial frequency r 17

  18. Self-similarity of natural images (2) Vannes Vannes (1) IMAGE scale invariance or self-similarity Spectrum log w Energy w Power spectrum decay w = w 0 r -q log r radial frequency r 18

  19. Non-stationarity of natural images : P2 textures Smooth areas Small features edges 19 2. Modélisation des images

  20. Image modeling Fractional brownian motion (w 0 ,q) P1 Fractal model P2 Non-stationary multiplier function P1 P2 Wavelet transform  ~ independent oefficients (~K-L) Image Frequency space space Subband histogram Frequency plane partition P2 Heavy-tailed distribution 20

  21. Inter-scale dependence Wavelet transform level 3 level 2 level 1 Inter-scale persistence of the details 21

  22. Basis choice (1) Optimal representation of features by different wavelet shapes Haar Symmlet-8 Complex [Haar, 10] [Daubechies, 88] [Kingsbury, 98] Sparse representation : keep a small number of coefficients log approximation error Asymptote E~N -1/2 image Haar Symmlet-8 log coefficients number 22

  23. Basis choice (2) : invariance properties Shift invariance ? Shifted image Haar Spline Symmlet 8 Complex Rotation invariance ? Haar Spline Symmlet 8 Complex 23

  24. Wavelet zoo • Orthogonal wavelets • Biorthogonal wavelets • Non-decimated (redundant) decompositions • Pyramidal representations (Burt-Adelson, etc.) • Wavelets-vaguelettes (deconvolution) • Non-linear multiscale transforms (lifting, non-linear prediction) • Curvelet transform (better represents curves) • Complex wavelets • Non-separable wavelets • Wavelets on manifolds • … 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend