walks in the quadrant differential algebraicity
play

Walks in the quadrant: differential algebraicity Mireille - PowerPoint PPT Presentation

Walks in the quadrant: differential algebraicity Mireille Bousquet-Mlou, LaBRI, CNRS, Universit de Bordeaux with Olivier Bernardi, Brandeis University, Boston Kilian Raschel, CNRS, Universit de Tours Counting quadrant walks... at the


  1. Walks in the quadrant: differential algebraicity Mireille Bousquet-Mélou, LaBRI, CNRS, Université de Bordeaux with Olivier Bernardi, Brandeis University, Boston Kilian Raschel, CNRS, Université de Tours

  2. Counting quadrant walks... at the séminaire lotharingien SLC 74, March 2015, Ellwangen: Three lectures by Alin Bostan “Computer Algebra for Lattice Path Combinatorics” SLC 77, September 2016, Strobl: Three lectures by Kilian Raschel “Analytic and Probabilistic Tools for Lattice Path Enumeration”

  3. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). Example. S = { 10 , ¯ 10 , 1 ¯ 1 , ¯ 11 } , p 0 = ( 0 , 0 )

  4. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). What is the number q ( n ) of n -step walks starting at p 0 and contained in N 2 ? For ( i , j ) ∈ N 2 , what is the number q ( i , j ; n ) of such walks that end at ( i , j ) ? Example. S = { 10 , ¯ 10 , 1 ¯ 1 , ¯ 11 } , p 0 = ( 0 , 0 ) ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ( i , j ) = ( 5 , 1 ) ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� ����������� �����������

  5. Counting quadrant walks Let S be a finite subset of Z 2 (set of steps) and p 0 ∈ N 2 (starting point). What is the number q ( n ) of n -step walks starting at p 0 and contained in N 2 ? For ( i , j ) ∈ N 2 , what is the number q ( i , j ; n ) of such walks that end at ( i , j ) ? The associated generating function: � � q ( i , j ; n ) x i y j t n . Q ( x , y ; t ) = n ≥ 0 i , j ≥ 0 What is the nature of this series?

  6. A hierarchy of formal power series • Rational series A ( t ) = P ( t ) Q ( t ) • Algebraic series P ( t , A ( t )) = 0 • Differentially finite series (D-finite) d � P i ( t ) A ( i ) ( t ) = 0 i = 0 • D-algebraic series P ( t , A ( t ) , A ′ ( t ) , . . . , A ( d ) ( t )) = 0 Multi-variate series: one DE per variable

  7. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) with ¯ x = 1 / x and ¯ y = 1 / y . � � q ( i , j ; n ) x i y j t n Q ( x , y ; t ) ≡ Q ( x , y ) = n ≥ 0 i , j ≥ 0

  8. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) ,

  9. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) , or xyQ ( x , y ) = xy − tyQ ( 0 , y ) − tx 2 Q ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y )

  10. 1. Write a functional equation Example: S = { 01 , ¯ 10 , 1 ¯ 1 } Q ( x , y ; t ) = 1 + t ( y + ¯ x + x ¯ y ) Q ( x , y ) − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) or � � 1 − t ( y + ¯ x + x ¯ y ) Q ( x , y ) = 1 − t ¯ xQ ( 0 , y ) − tx ¯ yQ ( x , 0 ) , or xyQ ( x , y ) = xy − tyQ ( 0 , y ) − tx 2 Q ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y ) • The polynomial 1 − t ( y + ¯ x + x ¯ y ) is the kernel of this equation • The equation is linear, with two catalytic variables x and y (tautological at x = 0 or y = 0) [Zeilberger 00]

  11. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive.

  12. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive. Example: for S ( y ; t ) = Q ( 0 , y ; t ) , � 2 y 2 − 1 t � tyS ( y ; t ) + 1 � tyS ( y ; t ) + 1 � − 2 t 2 S ( 0 ; t ) . y − ty = t − y y

  13. Equations with one catalytic variable are much easier! Theorem [mbm-Jehanne 06] Let P ( t , y , S ( y ; t ) , A 1 ( t ) , . . . , A k ( t )) be a polynomial equation in one catalytic variable y that defines uniquely S ( y ; t ) , A 1 ( t ) , . . . , A k ( t ) as formal power series. Then each of this series is algebraic. The proof is constructive. ⇒ A special case of an Artin approximation theorem with “nested” conditions [Popescu 86]

  14. Equations with two catalytic variables are harder... D-finite transcendental xyA ( x , y ) = xy − tyA ( 0 , y ) − tx 2 A ( x , 0 ) � � 1 − t ( y + ¯ x + x ¯ y ) Algebraic ( 1 − t (¯ x + ¯ y + xy )) xyA ( x , y ) = xy − tyA ( 0 , y ) − txA ( x , 0 ) Not D-finite ( 1 − t ( x + ¯ x + ¯ y + xy )) xyA ( x , y ) = xy − tyA ( 0 , y ) − txA ( x , 0 ) But why?

  15. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y

  16. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ ( , y ) and Ψ : ( x , y ) �→ ( x , ) .

  17. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) .

  18. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) . They are involutions, and generate a finite dihedral group G : Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ

  19. 2. The group of the model Example. Take S = { ¯ 10 , 01 , 1 ¯ 1 } , with step polynomial P ( x , y ) = ¯ x + y + x ¯ y Observation: P ( x , y ) is left unchanged by the rational transformations Φ : ( x , y ) �→ (¯ xy , y ) and Ψ : ( x , y ) �→ ( x , x ¯ y ) . They are involutions, and generate a finite dihedral group G : Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ Remark. G can be defined for any quadrant model with small steps

  20. The group is not always finite • If S = { 0 ¯ 1 , ¯ 1 ¯ 1 , ¯ 10 , 11 } , then P ( x , y ) = ¯ x ( 1 + ¯ y ) + ¯ y + xy and Φ : ( x , y ) �→ (¯ x ¯ y ( 1 + ¯ y ) , y ) and Ψ : ( x , y ) �→ ( x , ¯ x ¯ y ( 1 + ¯ x )) generate an infinite group: Ψ Φ Ψ Φ (¯ x ¯ y ( 1 + ¯ y ) , y ) · · · · · · · · · ( x , y ) ( x , ¯ x ¯ y ( 1 + ¯ x )) · · · · · · · · · Ψ Φ Ψ Φ

  21. 3. When G is finite: the orbit sum Example. If S = { 01 , ¯ 10 , 1 ¯ 1 } , the orbit of ( x , y ) is Ψ Φ (¯ xy , y ) (¯ xy , ¯ x ) Φ ( x , y ) (¯ y , ¯ x ) ( x , x ¯ y ) (¯ y , x ¯ y ) Ψ Ψ Φ and the (alternating) orbit sum is xy 2 + ¯ y 2 − x 2 ¯ x 2 y − ¯ OS = xy − ¯ x ¯ y + x ¯ y

  22. Classification of quadrant walks with small steps Theorem The series Q ( x , y ; t ) is D-finite iff the group G is finite. It is algebraic iff, in addition, the orbit sum is zero. [mbm-Mishna 10], [Bostan-Kauers 10] D-finite [Kurkova-Raschel 12] non-singular non-D-finite [Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite quadrant models: 79 | G | < ∞ : 23 | G | = ∞ : 56 D-finite Not D-finite OS = 0: 4 OS � = 0: 19 algebraic transcendental

  23. Classification of quadrant walks with small steps quadrant models: 79 | G | < ∞ : 23 | G | = ∞ : 56 D-finite Not D-finite OS = 0: 4 OS � = 0: 19 Random walks algebraic transcendental in probability Formal power D-finite series series algebra effective closure properties arithmetic properties Computer algebra asymptotics G-functions Complex analysis

  24. An old equation [Tutte 73] • Properly coloured triangulations ( q colours): T ( x , y ; t ) ≡ T ( x , y ) = x ( q − 1 ) + xytT ( x , y ) T ( 1 , y ) + xt T ( x , y ) − T ( x , 0 ) − x 2 yt T ( x , y ) − T ( 1 , y ) y x − 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend