w h e n i s a l i n e a r s y s t e m w h e n i s a l i n
play

W h e n i s a L i n e a r S y s t e m W h e n - PowerPoint PPT Presentation

MTNS06, Kyoto (July, 2006) W h e n i s a L i n e a r S y s t e m W h e n i s a L i n e a r S y s t e m E a s y o r D i f f i c u l t E a s y o r D i f f i c u l t t o C o n


  1. MTNS’06, Kyoto (July, 2006) W h e n i s a L i n e a r S y s t e m W h e n i s a L i n e a r S y s t e m E a s y o r D i f f i c u l t E a s y o r D i f f i c u l t t o C o n t r o l i n P r a c t i c e ? t o C o n t r o l i n P r a c t i c e ? Shinji Hara The University of Tokyo, Japan

  2. Outline ・ ・ Motivation & Background: Motivation & Background: new paradigm ・ ・ H2 Tracking Performance Limits: H2 Tracking Performance Limits: Explicit analytical solutions with examples ・ H2 Regulation Performance Limits: Explicit analytical solutions with examples ・ ・ Phase Property vs Achievable Robustness Performance H_inf loop shaping procedure - ・ ・ Concluding remarks Concluding remarks

  3. B e g i n w i t h . . . M o t i v a t i o n & B a c k g r o u n d - N e w p a r a d i g m o n - C o n t r o l t h e o r y -

  4. New Paradigm on Control Theory New Paradigm on Control Theory d(t) Find u(t) y(t) e(t) r(t) Best Given Given - K(s) P(s) P(s) Characterize d(t) u(t) y(t) e(t) r(t) Best Desirable Best - K(s) P(s) K(s)

  5. Bode I ntegral Relation Bode I ntegral Relation Assumption : L(s)=P(s)K(s): stable, r.d. >1 Closed-loop system: stable ∞ ∫ ω ω = ∑ log(| ( ) |) 0 S j d π p 0 i ω | ( ) | S j ω 1 = ( ) : S s + 1 ( ) ( ) P s K s

  6. ・ ・ Question ! Question ! Is any stable & MP plant always easy to control under physical constraints in practice ? control input energy measurement accuracy sampling period channel capacity etc. � Answer: NO ! � Answer: NO ! ・ ・ Aim of researches on control perf perf. limits: . limits: Aim of researches on control Characterization of easily controllable plants in practical situations

  7. 3-Disk Torsion System 8 0 J 3 poles 極 6 0 J d i s Disk 1 k 1 の零点 1 c θ ����� 3 3 4 0 d i s k 2 の零点 c Disk 2 k 1 θ 1 2 J k 2 2 0 1 J 2 0 c ����� θ m I 2 c 2 2 θ k 2 1 - 2 0 k 2 J J 1 3 - 4 0 ����� c θ c 1 3 θ u 1 - 6 0 3 T - 8 0 ������� - 2 . 5 - 2 - 1 . 5 - 1 - 0 . 5 0 R e All 3 TFs are marginally stable & MP, but the achievable performances are different.

  8. Step responses Disk1 Disk2 S t e p R e s p o n s e S t e p R e s p o n s e 1 1 ( a ) ( a ) 0 . 8 ( b ) 0 . 8 ( b ) 0 . 6 0 . 6 0 . 4 0 . 4 e e d d u u t t i i 0 . 2 l 0 . 2 l p p m m A A 0 0 - 0 . 2 - 0 . 2 - 0 . 4 - 0 . 4 - 0 . 6 - 0 . 6 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 T i m e ( s e c ) T i m e ( s e c ) Disk1 is better than Disk2. Why ?

  9. ・ ・ Question ! Question ! Is any stable & MP plant always easy to control under physical constraints in practice ? ・ ・ Aim of researches on control perf perf. limits: . limits: Aim of researches on control Characterization of easily controllable plants in practical situations New Paradigm New Paradigm ・ From Controller Design to Plant Design ・ ・ To provide guidelines of plant design To provide guidelines of plant design from the view point of control from the view point of control

  10. F i r s t t o p i c . . . H 2 T r a c k i n g P e r f o r m a n c e L i m i t s - e x p l i c i t a n a l y t i c a l s o l u t i o n s & a p p l i c a t i o n s - “Best Tracking and Regulation Performance under Control Energy Constraint” by J. Chen, S. Hara & G. Chen, IEEE TAC (2003) “Optimal Tracking Performance for SIMO Feedback Control Systems: Analytical closed-form expressions and guaranteed accuracy computation ” by S. Hara, M. Kanno & T. Bakhtiar, CDC’06 (submitted)

  11. Control Performance Limitations Control Performance Limitations ・ Bode Integral Relation ・ SISO stable/unstable ・ MIMO ・ Discrete-time/Sampled-data ・ Nonlinear ・ H-inf norm performance ・ Time-response performance ・ Tracking performance (H2 norm) ・ Regulation performance (H2 norm) Special issue in IEEE TAC, Aug. ,2003 Seron et. al. “Fundamental Limitations in Filtering and Control “

  12. H 2 2 Optim al Tracking Problem Optim al Tracking Problem H unit step input SIMO plant Performance Index: control effort tracking error

  13. G ( s ) 1/s 1 w(t) z(t) W - u u(t) P ( s ) y(t) P ( s ) e(t) K(s) K(s) X Riccati & LMI −   1 / ( ) s P s   = Analytic ( ) 0 G s W   u solution   −   1 / ( ) s P s ( closed-form )

  14. SISO marginally stable plant SISO marginally stable plant NMP zeros Plant gain

  15. Numerical Example Numerical Example = 1 ( ) W u 2 * J 1 = 2 1 z 1.0 = − 1 z 1 a

  16. Application to 3- -disk torsion system disk torsion system Application to 3 J * Disk 3 Disk 2 Disk 1 W u

  17. Discrete- -time case time case Discrete NMP zeros Plant gain � Delta Operator Continuous-time result

  18. General SI MO Case General SI MO Case Numerator: Unstable poles & NMP zeros:

  19. Stable terms: NMP zeros Plant gain

  20. Unstable terms: Unstable poles Unstable pole / NMP zeros

  21. Rem arks: : Rem arks Several cases where the computation of is not required. ・ SIMO marginally stable ・ SISO non control input penalty ・ SIMO ・ SIMO unstable: common unstable poles : Jcu=0 � many applications

  22. Optimal length of Inv. Pend. ?

  23. Tracking performance limit 6 5.5 5 c2 4.5 J * 4 3.5 3 0 0.5 1 1.5 2 l (m)

  24. Discrete- -time case time case Discrete NMP zeros Plant gain � Delta Operator Continuous-time result

  25. S e c o n d t o p i c . . . H 2 R e g u l a t i o n P e r f o r m a n c e L i m i t s - e x p l i c i t a n a l y t i c a l s o l u t i o n s & a n a p p l i c a t i o n - “Best Tracking and Regulation Performance under Control Energy Constraint” by J.Chen, S.Hara & G.Chen, IEEE TAC (2003) “H2 Regulation Performance Limits for SIMO Feedback Control Systems” by T.Bakhtiar & S.Hara, MTNS’06

  26. H 2 2 Optim al Regulation Problem Optim al Regulation Problem H Impulse input SIMO plant Performance Index : control effort performance on disturbance rejection

  27. SISO MP plant SISO MP plant unstable poles Plant gain

  28. Numerical Example Numerical Example 3500 via Theorem 1 via Toolbox 3000 2500 2000 * E E c * c 1500 1000 500 0 −1 0 1 2 3 4 5 p p

  29. SIMO NMP plant SIMO NMP plant Common NMP zeros MP case

  30. Application to Application to a Magnetic Bearing System a Magnetic Bearing System Normalized state-space equation:

  31. one unstable pole at p ・ current sensor: NMP NMP ・ position sensor: MP MP ・ multiple sensors: MP MP

  32. SISO MP discrete- -time plant time plant: : r.d.=1 SISO MP discrete � Delta Operator Continuous-time result

  33. Magnetic bearing system: : Magnetic bearing system caused by discretized NMP zeros

  34. L a s t t o p i c . . . P h a s e P r o p e r t y v s A c h i e v a b l e R o b u s t n e s s P e r f o r m a n c e - H _ i n f l o o p s h a p i n g p r o c e d u r e - “Dynamical System Design from a Control Perspective: Finite frequency positive-realness approach” by T. Iwasaki & S. Hara, IEEE TAC (2003) “Finite Frequency Phase Property Versus Achievable Control Performance in H_inf Loop Shaping Design” by S. Hara, M. Kanno & M. Onishi, SICE-ICCAS’06 (to be presented)

  35. FFPR (Finite Frequency Positive Realness) FFPR

  36. ー Finite Frequency Positive Realness ー (LMI condition)   A B ω 0 > =   given ( ) , G s 0   C D ω ∀ ω + ω > ω ≤ * ( ) ( ) 0 , | | G j G j 0 ∃ = > = T T 0 , . . X X Y Y s t −  T       Y 0 X B A I A I <         ω + 2 T T     0 0     C C B D D Y X 0

  37. H inf inf LSDP LSDP H (H inf Loop-Shaping Design Procedure)

  38. Good Phase Property

  39. 2 nd order plant

  40. Characterization of good plants

  41. Numerical Example Numerical Example P(s) K(s) L(s)=P(s)K(s) Bode diagrams B o d e D i a g r a m Nyquist plots 6 0 N y q u i s t D i a g r a m 4 0 1 . 5 2 0 ) B d ( 0 1 e d u t i - 2 0 n g a M - 4 0 0 . 5 - 6 0 - 2 - 1 0 1 2 3 1 0 1 0 1 0 1 0 1 0 1 0 s i x A 0 9 0 y r a n i g a m 0 I - 0 . 5 ) g e d - 9 0 ( e s a - 1 h P - 1 8 0 - 2 7 0 - 1 . 5 - 2 - 1 0 1 2 3 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 1 0 1 0 1 0 1 0 1 0 1 0 R e a l A x i s F r e q u e n c y ( r a d / s e c )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend