simulation of stand alone photovoltaic system using python
play

Simulation of Stand-alone Photovoltaic System using Python Arjun - PowerPoint PPT Presentation

Simulation of Stand-alone Photovoltaic System using Python Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju Department of Electrical & Electronics Engineering B.V.B College of Engineering & Technology, Hubli-31 December 29, 2012 Arjun


  1. Simulation of Stand-alone Photovoltaic System using Python Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju Department of Electrical & Electronics Engineering B.V.B College of Engineering & Technology, Hubli-31 December 29, 2012 Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  2. System Block Diagram Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  3. Circuit Diagram Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  4. Boost converter Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  5. Case 1: when switch is ON dt = 1 di L [ V in − (1 − S ) V c ] Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  6. dV in = 1 C [(1 − S ) i − V c R ] dt Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  7. Principal Symbols V pv = PV module voltage I pv = PV module currrent I ph = Photo current I rs = Reverse saturation current n s = Number of cells connected in series n p = Number of cells connected in parallel R s = Series Resistance R sh = Shunt Resistance T = Temperature in Kelvin B = Ideality factor of the diode q = Electron charge (1.602 x 10 − 19 C) K = Boltzmann’s constant (1.38 x 10 23 J/K) Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  8. PV Module: Mathematical Model Figure: Typical PV cell V pv = ( n s kTB ) ∗ ln [ n p I ph − I pv + n p I rs ] − R s I pv q I rs Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  9. Electrical Characteristics Symbol Quantity Value P max maximum power 5.0 W V max Voltage at P max 17.2 V I max Current at P max 0.29 A I sc Short circuit current 0.32 A Open circuit voltage 21.0 V V oc Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  10. Results VI characteristics of PV module at different insolations Figure: VI characteristics Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  11. Results Power curves of the PV module at different insolations Figure: Power curve Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  12. Why Python? Python has all the features present in the other simulation softwares. Free and Open Source. Possibility of improving performance comparable to compiled languages. Possibility of developing GUI application. Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  13. flowchart to generate the switching pulses at MPP Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  14. Figure: Plot of Ireference Vs Insolation Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  15. flowchart for system simulation Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  16. Results Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  17. Experimental setup Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  18. Results Dutycycle when R load = 150 ohms Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  19. Conclusion The system simulation has been carried out for one value of insolation & hysterisis band control has been used for generating switching pulses. Further the simulation can be carried out for different insolation levels. MPP tracking algorithms can be implemented. Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  20. References E. Koutroulis, K. Kalaitzakis, and N.C.Voulgaris, Development of a microcontroller-based, photovoltaic maximum power point tracking control system , IEEE Transactions on Power Electronics, vol.16, no.21, pp. 4654, Jan.2001. Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

  21. THANK YOU Arjun Sanu M, B. Kanoj, Vijaybabu and A. B. Raju BVBCET Hubli Simulation of Stand-alone Photovoltaic System using Python

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend