uta poly and utadis poly using polynomial marginal
play

UTA-poly and UTADIS-poly: using polynomial marginal utility - PowerPoint PPT Presentation

UTA-poly and UTADIS-poly: using polynomial marginal utility functions in UTA and UTADIS Olivier Sobrie 1 , 2 - Nicolas Gillis 2 - Vincent Mousseau 1 - Marc Pirlot 2 1 cole Centrale de Paris - Laboratoire de Gnie Industriel 2 University of Mons


  1. UTA-poly and UTADIS-poly: using polynomial marginal utility functions in UTA and UTADIS Olivier Sobrie 1 , 2 - Nicolas Gillis 2 - Vincent Mousseau 1 - Marc Pirlot 2 1 École Centrale de Paris - Laboratoire de Génie Industriel 2 University of Mons - Faculty of engineering July 15, 2015 University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 1 / 26

  2. 1 UTA methods 2 Motivations for UTA-poly and UTADIS-poly 3 UTA-poly and UTADIS-poly 4 Experiments 5 Conclusion University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 2 / 26

  3. UTA methods Additive utility function model ◮ A marginal utility function u j is associated to each criterion j ◮ Marginal utility functions are monotonic ◮ Marginal utility functions are normalized between 0 and 1, s.t. u j ( g j ) = 0 and u j ( g j ) = 1 ◮ A weight w j is associated to each criterion j , s.t. � j w j = 1 u j 1 ◮ Utility of an alternative a : u j ( a j ) n � U ( a ) = w j · u j ( a j ) j = 1 0 g j j + a j g j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 3 / 26

  4. UTA methods Additive utility function model ◮ A marginal utility function u j is associated to each criterion j ◮ Marginal utility functions are monotonic ◮ Marginal utility functions are normalized between 0 and 1, s.t. u j ( g j ) = 0 and u j ( g j ) = 1 ◮ A weight w j is associated to each criterion j , s.t. � j w j = 1 u ∗ j w j ◮ We also have : u ∗ j ( a ) = w j · u j ( a j ) and u ∗ j ( g j ) = w j ◮ Utility of an alternative a : u ∗ j ( a j ) n n � � u ∗ U ( a ) = w j · u j ( a j ) = j ( a j ) j = 1 j = 1 0 g j j + a j g j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 3 / 26

  5. UTA methods UTA : Presentation ◮ Not easy to elicit directly the marginal utility functions ◮ Disaggregation procedure proposed by [Jacquet-Lagrèze and Siskos, 1982] ◮ Utility functions are computed on basis of a ranking given in input ◮ Linear programming University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 4 / 26

  6. UTA methods UTA - Constraints I ◮ Two type of information (pairwise comparison) : 1. a is preferred to b , i.e. U ( a ) > U ( b ) ⇒ ( a , b ) ∈ P 2. a is indifferent to b , i.e. U ( a ) = U ( b ) ⇒ ( a , b ) ∈ I ◮ A potential error is introduced for each alternative utility U ( a ) , s.t. U ′ ( a ) = U ( a ) + σ + ( a ) − σ − ( a ) ◮ Constraints of the linear program :  U ( a ) − U ( b ) + σ + ( a ) − σ − ( a )   − σ + ( b ) + σ − ( b ) 0  > ∀ ( a , b ) ∈ P ,    U ( a ) − U ( b ) + σ + ( a ) − σ − ( a )     − σ + ( b ) + σ − ( b )  = 0 ∀ ( a , b ) ∈ I ,  � n j = 1 u ∗ j ( g j ) = 1 ,  � n  j = 1 u ∗ j ( g j ) = 0 ,     σ + ( a ) , σ − ( a )  0 ∀ a ∈ A ∗ , ≥     u ∗ monotonic ∀ j ∈ N .  j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 5 / 26

  7. UTA methods UTA - Constraints II ◮ Monotonicity is ensured by using piecewise linear functions for the marginal utility functions u ∗ j ◮ Domain of the criterion split in k equal w j + u ∗ 3 parts + j u ∗ 2 + j ◮ Position of the g l j , for l = 0 , . . . , k fixed a u ∗ j ( a j ) u ∗ 1 priori (equidistant) + j 0 g j j + + + + + a j g 1 g 2 g 3 g j j j j ◮ Marginal utility value of an alternative a : � � � a j − g L − 1 � j u ∗ j ( a ) = u ∗ L − 1 u ∗ L − u ∗ L − 1 + j j j j − g L − 1 g L j with g L j the first breakpoint s.t. a j ≤ g L j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 6 / 26

  8. UTA methods UTADIS ◮ Sorting problems ◮ Comparison of alternatives to thresholds delimiting the categories ◮ Disaggregation though linear programming ◮ Similar approach as for UTA : utility functions are modelled through piecewise linear functions University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 7 / 26

  9. Motivations for UTA-poly and UTADIS-poly Motivations for UTA-poly and UTADIS-poly I Drawbacks of UTA methods ◮ Marginal utility functions are not natural close to the breakpoints of the piecewise linear functions ◮ Breakpoints at pre-defined position : limit the flexibility of the model Existing works ◮ Bugera, V., Konno, H., and Uryasev, S. (2002). Credit cards scoring with quadratic utility functions. Journal of Multi-Criteria Decision Analysis , 11(4-5):197–211 ◮ Słowínski, R., Greco, S., and Mousseau, V. (2005). Multi-criteria ranking of a finite set of alternatives using ordinal regression and additive utility functions - a new UTA-GMS method. In Practical Approaches to Multi-Objective Optimization University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 8 / 26

  10. Motivations for UTA-poly and UTADIS-poly Motivations for UTA-poly and UTADIS-poly II UTA-poly and UTADIS-poly ◮ We propose to replace piecewise linear functions by polynomial ones by using semi-definite programming (SDP) ◮ Degree of the polynomial chosen a priori u ∗ u ∗ j j w j w j + u ∗ 3 + j u ∗ 2 + j u ∗ j ( a j ) u ∗ j ( a j ) ⇒ u ∗ 1 + j 0 g j j + + + + + 0 g j j + a j g 1 g 2 g 3 g j a j g j j j j � a j − g 1 � � j ( a ) = p 0 + p 1 · a j + p 2 · a 2 j + . . . + p D · a D u ∗ � j j ( g 1 u ∗ 2 − u ∗ 1 u ∗ j ( a ) = u ∗ j )+ j j j g 2 j − g 1 j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 9 / 26

  11. UTA-poly and UTADIS-poly Semi-Definite Programming (SDP) I Theorem A polynomial F ( z ) , with z ∈ R n is nonnegative if it is possible to decompose it as a sum of squares (SOS) : f 2 � with f s ( z ) ∈ R n . F ( z ) = s ( z ) s Not every non-negative polynomial is a Sum Of Squares (SOS), but : Theorem (Hilbert) A non-negative polynomial in one variable is always a SOS. University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 10 / 26

  12. UTA-poly and UTADIS-poly Semi-Definite Programming (SDP) II ◮ Consider the following polynomial of degree D : D p ( x ) = p 0 + p 1 x + p 2 x 2 + ... + p D x D = � p i x i . i = 0 p ( x ) non-negative ⇐ ⇒ it can be decomposed as a SOS. � D s ] and x T = [ 1 , x , ..., x d ] , the , b T s = [ b 0 s , b 1 ◮ Let d = � s , ..., b d 2 polynomial reads : � d � � 2 � q 2 b T � � � b i s x i � p ( x ) = s ( x ) = = s x j s s i = 0 s �� � � x T b s b T s x = x T b s b T x = x T Qx = s s s University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 11 / 26

  13. UTA-poly and UTADIS-poly Semi-Definite Programming (SDP) III p ( x ) = p 0 + p 1 x + p 2 x 2 + . . . + p D x D T       1 q 0 , 0 q 0 , 1 q 0 , 2 · · · q 0 , d 1 x q 1 , 0 q 1 , 1 q 1 , 2 · · · q 1 , d x       x 2 x 2       = x T Qx = q 2 , 0 q 2 , 1 q 2 , 2 q 2 , d · · · .        .   . . . .   .  ... . . . . . .       . . . . . .       x d x d q d , 0 q d , 1 q d , 2 · · · q d , d ◮ p 0 , p 1 , . . . , p D are obtained by summing the off-diagonal entries of Q :  p 0 = q 0 , 0 ,    p 1 = q 1 , 0 + q 0 , 1 ,      p 2 = q 2 , 0 + q 1 , 1 + q 0 , 2 ,   . . .     p 2 d − 1 = q d , d − 1 + q d − 1 , d ,      p 2 d = q d , d , if D is odd, we have p 2 d = 0 .  University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 12 / 26

  14. UTA-poly and UTADIS-poly UTA-poly and UTADIS-poly ◮ Marginal utility functions defined as polynomials of degree D : D � p j , i · a i u ∗ j ( a j ) = j . i = 0 ◮ To ensure monotonicity of the function, u ∗ ′ j ( a j ) has to be nonnegative. ⇒ u ∗ ′ should be a SOS : j ∂ u ∗ j = p j , 1 + 2 p j , 2 · a j + 3 p j , 3 · a 2 j + ... + Dp j , n · a D − 1 j ∂ a j = ∂ � � a j T Qa j ∂ a j ◮ Using a SDP solver, we impose Q to be semidefinite positive. University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 13 / 26

  15. UTA-poly and UTADIS-poly UTA-poly - Example I x y a 1 10 7 a 1 ≻ a 2 ≻ a 3 a 2 6 8 a 3 7 5 ◮ We define u ∗ 1 ( x ) and u ∗ 2 ( y ) as second degree polynomials : 1 ( x ) = p x , 0 + p x , 1 · x + p x , 2 · x 2 , u ∗ 2 ( y ) = p y , 0 + p y , 1 · y + p y , 2 · y 2 . u ∗ ◮ Utilities of a 1 , a 2 and a 3 are given by : U ( a 1 ) = p x , 0 + 10 p x , 1 + 100 p x , 2 + p y , 0 + 7 p y , 1 + 49 p y , 2 , U ( a 2 ) = p x , 0 + 6 p x , 1 + 36 p x , 2 + p y , 0 + 8 p y , 1 + 64 p y , 2 , U ( a 3 ) = p x , 0 + 7 p x , 1 + 49 p x , 2 + p y , 0 + 5 p y , 1 + 25 p y , 2 . University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 15, 2015 14 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend