uta splines and utadis splines
play

UTA-splines and UTADIS-splines Olivier Sobrie 1 , 2 - Nicolas Gillis - PowerPoint PPT Presentation

UTA-splines and UTADIS-splines Olivier Sobrie 1 , 2 - Nicolas Gillis 2 - Vincent Mousseau 1 - Marc Pirlot 2 1 cole Centrale de Paris - Laboratoire de Gnie Industriel 2 University of Mons - Faculty of engineering July 5, 2016 University of Mons


  1. UTA-splines and UTADIS-splines Olivier Sobrie 1 , 2 - Nicolas Gillis 2 - Vincent Mousseau 1 - Marc Pirlot 2 1 École Centrale de Paris - Laboratoire de Génie Industriel 2 University of Mons - Faculty of engineering July 5, 2016 University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 1 / 28

  2. 1 Additive value function model 2 Learning an AVF model 3 UTA(DIS)-poly 4 UTA(DIS)-splines 5 Experiments 6 Conclusion and further research University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 2 / 28

  3. Additive value function model 1 Additive value function model 2 Learning an AVF model 3 UTA(DIS)-poly 4 UTA(DIS)-splines 5 Experiments 6 Conclusion and further research University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 3 / 28

  4. Additive value function model Additive value function model I Principle ◮ A score is computed for each alternative ◮ The score is used to rank or to sort alternatives University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 4 / 28

  5. Additive value function model Additive value function model II ◮ A marginal value function u j is associated to each criterion j ◮ Marginal value functions are monotonic ◮ Marginal value functions are normalized between 0 and 1, s.t. u j ( a j ) = 0 and u j ( a j ) = 1 ◮ A weight w j is associated to each criterion j , s.t. � n j = 1 w j = 1 u j 1 ◮ Utility of an alternative a : u j ( a j ) n � U ( a ) = w j · u j ( a j ) j = 1 0 a j j + a j a j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 5 / 28

  6. Additive value function model Additive value function model II ◮ A marginal value function u j is associated to each criterion j ◮ Marginal value functions are monotonic ◮ Marginal value functions are normalized between 0 and 1, s.t. u ∗ j ( a j ) = 0 and u ∗ j ( a j ) = w j ◮ A weight w j is associated to each criterion j , s.t. � n j = 1 w j = 1 u ∗ j w j ◮ We also have : u ∗ j ( a ) = w j · u j ( a j ) and u ∗ j ( a j ) = w j ◮ Utility of an alternative a : u ∗ j ( a j ) n n � � u ∗ U ( a ) = w j · u j ( a j ) = j ( a j ) j = 1 j = 1 0 a j j + a j a j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 5 / 28

  7. Additive value function model Example price rating dist. beach dist. center size 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 j ( a j ) 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 u ∗ 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 600 0 800 0 200 5 45 1 5 m m ⋆ e m 2 Ranking Plaza Miramar Hilton Hotel W ≻ ≻ ≻ 0.53 0.51 0.43 0.41 Sorting 0.5 Good Bad Plaza Miramar Hilton Hotel W 0.53 0.51 0.43 0.41 University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 6 / 28

  8. Learning an AVF model 1 Additive value function model 2 Learning an AVF model 3 UTA(DIS)-poly 4 UTA(DIS)-splines 5 Experiments 6 Conclusion and further research University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 7 / 28

  9. Learning an AVF model Existing methods for learning an AVF model ◮ UTA : LP for learning the parameters of an AVF-ranking model ◮ UTADIS : LP for learning the parameters of an AVF-sorting model ◮ Other methods : UTA * , ACUTA , . . . ◮ Monotonicity of the marginals is ensured ◮ Marginals are modeled with piecewise linear functions u ∗ j w j + u ∗ 3 + j u ∗ 2 + j u ∗ j ( a j ) u ∗ 1 + j 0 a j j + + + + + a j a j g 1 g 2 g 3 j j j University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 8 / 28

  10. UTA(DIS)-poly 1 Additive value function model 2 Learning an AVF model 3 UTA(DIS)-poly 4 UTA(DIS)-splines 5 Experiments 6 Conclusion and further research University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 9 / 28

  11. UTA(DIS)-poly UTA(DIS)-poly I Principle ◮ Use of polynomials for the marginal value functions u ∗ u ∗ j j w j w j + u ∗ 3 + j u ∗ 2 ⇒ + j u ∗ j ( a j ) u ∗ j ( a j ) u ∗ 1 + j 0 a j j + + + + + 0 a j j a j + g 1 g 2 g 3 a j a j a j j j j Motivations ◮ Improve the flexibility of the model ◮ Improve the interpretability of the model University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 10 / 28

  12. UTA(DIS)-poly UTA(DIS)-poly II ◮ Use of semi-definite programming (SDP) ◮ Based on interior point methods ◮ Possibility to impose the nonnegativity of a symmetric matrix   q 1 , 1 q 1 , 2 q 1 , 3 · · · q 1 , n q 2 , 2 q 2 , 3 · · · q 2 , n     q 3 , 3 · · · q 3 , n Q = ≥ 0    .  ... .   .   (symmetric) q n , n ◮ Monotonicity of the marginals guaranteed ◮ Ensured by imposing the nonnegativity of the derivative ◮ Use of Hilbert’s theorems University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 11 / 28

  13. UTA(DIS)-poly UTA(DIS)-poly III Theorem (Hilbert) A polynomial F : R n → R is nonnegative if it is possible to decompose it as a sum of squares (SOS) : � f 2 with z ∈ R n . F ( z ) = s ( z ) s Theorem (Hilbert) A non-negative polynomial in one variable is always a SOS. Theorem (Hilbert) A polynomial p ( x ) in one variable x is non-negative in the interval [ v 1 , v 2 ] , if and only if p ( x ) = ( x − v 1 ) · q ( x ) + ( v 2 − x ) · r ( x ) where q ( x ) and r ( x ) are SOS. University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 12 / 28

  14. UTA(DIS)-poly UTA-poly - Example I x y a 1 10 7 a 1 ≻ a 2 ≻ a 3 a 2 6 8 a 3 7 5 ◮ We define u ∗ 1 ( x ) and u ∗ 2 ( y ) as third degree polynomials : 1 ( x ) = p x , 0 + p x , 1 · x + p x , 2 · x 2 + p x , 3 · x 3 , u ∗ 2 ( y ) = p y , 0 + p y , 1 · y + p y , 2 · y 2 + p y , 3 · y 3 . u ∗ ◮ Scores of a 1 , a 2 and a 3 are given by : U ( a 1 ) = p x , 0 + 10 p x , 1 + 100 p x , 2 + 1000 p x , 3 + p y , 0 + 7 p y , 1 + 49 p y , 2 + 343 p y , 3 , U ( a 2 ) = p x , 0 + 6 p x , 1 + 36 p x , 2 + 324 p x , 3 + p y , 0 + 8 p y , 1 + 64 p y , 2 + 512 p y , 3 , U ( a 3 ) = p x , 0 + 7 p x , 1 + 49 p x , 2 + 343 p x , 3 + p y , 0 + 5 p y , 1 + 25 p y , 2 + 125 p y , 3 . University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 13 / 28

  15. UTA(DIS)-poly UTA-poly - Example II ◮ Scores of a 1 , a 2 and a 3 are given by : U ( a 1 ) = p x , 0 + 10 p x , 1 + 100 p x , 2 + 1000 p x , 3 + p y , 0 + 7 p y , 1 + 49 p y , 2 + 343 p y , 3 , U ( a 2 ) = p x , 0 + 6 p x , 1 + 36 p x , 2 + 324 p x , 3 + p y , 0 + 8 p y , 1 + 64 p y , 2 + 512 p y , 3 , U ( a 3 ) = p x , 0 + 7 p x , 1 + 49 p x , 2 + 343 p x , 3 + p y , 0 + 5 p y , 1 + 25 p y , 2 + 125 p y , 3 . ◮ We have a 1 ≻ a 2 and a 2 ≻ a 3 , which implies : � U ( a 1 ) − U ( a 2 ) + σ + ( a 1 ) − σ − ( a 1 ) − σ + ( a 2 ) + σ − ( a 2 ) > 0 , U ( a 2 ) − U ( a 3 ) + σ + ( a 2 ) − σ − ( a 2 ) − σ + ( a 1 ) + σ − ( a 1 ) > 0 . ◮ By replacing U ( a 1 ) , U ( a 2 ) and U ( a 3 ) , we have :  4 p x , 1 + 64 p x , 2 + 776 p x , 3 − p y , 1 − 15 p y , 2 − 231 p y , 3 + σ + ( a 1 ) − σ − ( a 1 )   − σ + ( a 2 ) + σ − ( a 2 ) > 0 ,  − p x , 1 − 13 p x , 2 − 19 p x , 3 + 3 p y , 1 + 39 p y , 2 + 387 p y , 3 + σ + ( a 2 ) − σ − ( a 2 )   − σ + ( a 3 ) + σ − ( a 3 ) > 0 .  University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 14 / 28

  16. UTA(DIS)-poly UTA-poly - Example III ◮ We impose the derivative of u ∗ 1 and u ∗ 2 to be SOS : 1 = x T Qx u ∗ ′ � T � q 0 , 0 � 1 � � 1 � q 0 , 1 = x q 1 , 0 q 1 , 1 x = q 0 , 0 + ( q 0 , 1 + q 0 , 1 ) x + q 1 , 1 x 2 , 2 = y T Ry u ∗ ′ = r 0 , 0 + ( r 0 , 1 + r 1 , 0 ) y + r 1 , 1 y 2 . ◮ Q and R have to be semi-definite positive , in conjunction with :   p x , 1 = q 0 , 0 , p y , 1 = r 0 , 0 ,     2 p x , 2 = q 0 , 1 + q 1 , 0 , and 2 p y , 2 = r 0 , 1 + r 1 , 0 ,   3 p x , 3 = q 1 , 1 , 3 p y , 3 = r 1 , 1 .   University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 15 / 28

  17. UTA(DIS)-poly UTA-poly - Example IV ◮ We add normalization constraints :  = 0 , p x , 0  p y , 0 = 0 , 10 p x , 1 + 100 p x , 2 + 1000 p x , 3 + 10 p y , 1 + 100 p y , 2 + 1000 p y , 3 = 1 .  University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 16 / 28

  18. UTA(DIS)-poly UTA-poly - Example V min σ + ( a 1 ) + σ − ( a 1 ) + σ + ( a 2 ) + σ − ( a 2 ) + σ + ( a 3 ) + σ − ( a 3 ) . such that :  4 p x , 1 + 64 p x , 2 + 776 p x , 3 − p y , 1 − 15 p y , 2 − 231 p y , 3  + σ + ( a 1 ) − σ − ( a 1 ) − σ + ( a 2 ) + σ − ( a 2 )  > 0 ,     − p x , 1 − 13 p x , 2 − 19 p x , 3 + 3 p y , 1 + 39 p y , 2 + 387 p y , 3     + σ + ( a 2 ) − σ − ( a 2 ) − σ + ( a 3 ) + σ − ( a 3 ) > 0 ,     p x , 0 = 0 ,     p y , 0 = 0 ,    10 p x , 1 + 100 p x , 2 + 1000 p x , 3 + 10 p y , 1 + 100 p y , 2 + 1000 p y , 3 = 1 , p x , 1 = q 0 , 0 ,     2 p x , 2 = q 0 , 1 + q 1 , 0 ,      3 p x , 3 = q 1 , 1 ,     p y , 1 = r 0 , 0 ,     2 p y , 2 = r 0 , 1 + r 1 , 0 ,    =  3 p y , 3 r 1 , 1 , with : � Q , R PSD , σ + ( a 1 ) , σ − ( a 1 ) , σ + ( a 2 ) , σ − ( a 2 ) , σ + ( a 3 ) , σ − ( a 3 ) 0 . ≥ University of Mons O. Sobrie - N. Gillis - V. Mousseau - M. Pirlot - July 5, 2016 17 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend