using ambient vibration measurements
play

Using Ambient Vibration Measurements for Risk Assessment at Urban - PowerPoint PPT Presentation

Using Ambient Vibration Measurements for Risk Assessment at Urban Scale : from Numerical Proof of Concept to a Case Study in Beirut (Lebanon) Christelle Salameh 1 , Pierre-Yves Bard 1 , Bertrand Guillier 1 , Jacques Harb 2 , Ccile Cornou 1 and


  1. Using Ambient Vibration Measurements for Risk Assessment at Urban Scale : from Numerical Proof of Concept to a Case Study in Beirut (Lebanon) Christelle Salameh 1 , Pierre-Yves Bard 1 , Bertrand Guillier 1 , Jacques Harb 2 , Cécile Cornou 1 and Michelle Almakari 1 1 - ISTerre, University Grenoble-Alpes, France 2 - Notre-Dame University-Louaizé, Lebanon ESG5, Taipei, Taiwan, 15/08/2016

  2. Outline Introduction ? Use of frequency information in large scale damage assessment Conceptual framework and comprehensive numerical simulation SDOF elastoplastic oscillators on multilayered 1D (linear) soil profiles ANN analysis Robustness and field applicability ? easily available site amplification proxy NL soil behavior (MDOF) Sense-check : example Application to Beirut City (Lebanon) Conclusions, caveats and further steps ESG5, Taipei, Taiwan, 15/08/2016

  3. Introductory words • Many examples of larger damage due to coincidence between soil and building frequencies  Mexico 1985, Kathmandu 2015, …  Obvious for linear systems, not so much for NL systems • Building specific studies (detailed information)  best GM proxy = SA (f 0 ) or ASA ([0.6 – 1] f 0 ) – (Perrault & Gueguen, 2015; De Biasio, 2015) • ? Urban scale (or larger) : Damage / Risk maps  Microzonation, site effects : rather quantitative assessment • Site characterization : Geology, VS30, f0 (H/V, … ) • Site amplification Lack of consistency  Building surveys : most often only qualitative hazard / vulnerabilty • Gross typology ESG5, Taipei, Taiwan, 15/08/2016

  4. Damage Estimation Bullding scale : Large scale (urban) ? Mechanical methods Macroseismic approach (Hazus, RISK-UE) Damage Intensity (or PGA) Vulnerability Curves for various Purple: Seismic demand building typologies Black: Building Resistance Large scale = qualitative Individual scale = quantitative ! Challenging ! (spatial variability) Estimate damages quantitatively on a large scale with more mechanical input including spectral coincidence ESG5, Taipei, Taiwan, 15/08/2016

  5. Outline Introduction ? Use of frequency information in large scale damage assessment Conceptual framework and comprehensive numerical simulation Elastoplastic SDOF oscillator on a single layer Extension through comprehensive numerical simulation SDOF elastoplastic oscillators on multilayered 1D soil profiles Neural network analysis ESG5, Taipei, Taiwan, 15/08/2016

  6. Soil response 3f0 5f0 f0 Soil Reflexion/Transmission properties Bedrock ESG5, Taipei, Taiwan, 15/08/2016

  7. Oscillator response : weak input (linear response) Linear branch of the oscillator d max ESG5, Taipei, Taiwan, 15/08/2016

  8. Oscillator response : strong input (non linear domain) Elastoplastic Behavior of the oscillator dmax ESG5, Taipei, Taiwan, 15/08/2016

  9. Conceptual framework : a simple illustrative example V Plastic Linear Vy 54 SDOF Elastoplastic oscillators 9 x f structure = 1 → 9 Hz 6 x dy= 0.005 → 0.05 (m) du dy d H(m), 36 Linear single-layer sites (No SSI) : ρ , 4 x Velocity Contrast= 2 → 8 Vs (m/s) 9 x f soil = 1 → 9 (Hz) Qs 60 synthetic Input motion (Sabetta Vs=1000 m/s Bedrock and Pugliese 1996 : nonstationary): 5 x Magnitude= 3 → 7 4 x Distance= 5 → 100 (km) PGA= 0.02- 8.6 (m/s 2 ) 116 640 Models ESG5, Taipei, Taiwan, 15/08/2016

  10. Comparison soil / rock dmax soil / dmax rock dmax soil On soil On outcropping bedrock dmax rock Bedrock Bedrock Same input motion ESG5, Taipei, Taiwan, 15/08/2016

  11. Statistical analysis for the simple case Low PGA / linear response High PGA V V F struct = 9 Hz f struct =1 Hz dmax(rock) dmax(soil) dmax(soil) Vy Vy dmax(rock) fsoil=3 Hz H(m), ρ , Vs(m/s) d du dy d du dy Vs=1000 m/s Bedrock Non-linear C=2 behavior of f struct /f soil = 1 the dmax(soil) /dmax(rock C=4 54 oscillators, structure 9 site frequencies (1-9 Hz) f struct /f soil = 3 ) C=6 1 velocity contrast f struct /f soil =0.33 C=8 f struct /f soil = 3 0.1 1.0 10 1.0 10 f struct / f soil F struct / f soil ESG5, Taipei, Taiwan, 15/08/2016

  12. Realistic (less unrealistic … ) case: real soil profiles Risk-UE typologies : 141 SDOF elastoplastic oscillators f struct, dy, du classified into 5 typology classes: 1 = Masonry; 2 = Non-designed RC; 3 = RC Low ductility; 4= RC Medium ductility; 5) RC High ductility 887 multilayered linear soils (still no SSI): 614 KiKnet + 251 USA + 22 Europe f soil = 0.2-39 Hz Vs30= 111 -2100 m/s depth= 7-1575 m 60 synthetic Input Signal: Magnitude= 3 → 7, Distance = 5 → 100 km PGA= 0.02- 8.6 m/s 2 ~7.5 MILLION MODELS!!! ESG5, Taipei, Taiwan, 15/08/2016

  13. Oscillator characteristics Distribution dy – T Distribution du/dy – T struct struct Yield displacement dy Ductility du/dy Period (s) Period (s) ESG5, Taipei, Taiwan, 15/08/2016

  14. Distribution of site characteristics Sediment Thickness Fundamental frequency 150 80 70 60 100 50 Frequency Frequency 40 30 50 20 10 0 0 1 3.16 10 31.62 100 316.22 1000 3162.27 0.1 0.31 1 3.16 10 31.62 100 1 10 100 1000 0.1 1. 10. 100 . f 0 (Hz) Depth (m) Thickness (m) f 0 (Hz) 100 80 Velocity contrast 90 70 V S30 80 60 70 50 Frequency 60 Frequency 50 40 40 30 30 20 20 10 10 0 0 100 158.48 251.18 398.10 630.95 1000 1584.89 2511.88 1 1.58 2.51 3.98 6.30 10 15.84 25.11 39.81 63.09 100 300. 1000. 3000. 1 3. 10. V s30 (m/s) Cv V S30 (m/s) 30. C V = V max / V min ESG5, Taipei, Taiwan, 15/08/2016

  15. Classical statistical analysis? ~7.5 MILLION MODELS!!! Input parameters "SSS" Soil 1 output Structure Signal Damage increment Artificial Neural Network ANN ESG5, Taipei, Taiwan, 15/08/2016

  16. Neural network approach Goal  to look for statistical relationships between pre-selected input and output variables, without any a priori on the functional forms Principle (ML perceptron)  Combination through weigthed sums ("synaptic weights") and "activation functions"  Introduction of a "hidden layer" Implementation  Selection of input and output parameters  Learning, validation and test sets : 70%, 15%, 15%  Optimizing • Number of neurons in the hidden layer • Activation functions • Training algorithm ESG5, Taipei, Taiwan, 15/08/2016

  17. Neural Network : principle Hidden layer Activation Inputs ∑ w i1 functions ∑ w h j Computed Target Output Error Performance parameters RMSE w ij , w h j = synaptic weights R 2 Initially random, optimized ESG5, Taipei, Taiwan, 15/08/2016 through training

  18. Neural Network: Our case study Input layer Output layer Hidden Layer PGA Target fstruct/ fsoil Damage increment Velocity One ANN for each building contrast typology class (1-5) ESG5, Taipei, Taiwan, 15/08/2016

  19. Damage level index V Damage index DI D4 Complete 4 Vy 1.5dy 0.5(dy+du) D3 extensive du 3 0.7dy D2 moderate 2 D1 Slight 1 D0 No damage 0 du dy d Risk-UE project : correspondence between EMS98 damage states and maximum structural displacement (Lagomarsino and Giovinazzi, 2006) ESG5, Taipei, Taiwan, 15/08/2016

  20. Performance of the ANN models Initial Coeffificient of ANN Model / Vulnerability Error RMSE Variance standard determination Class RMSE Reduction reduction deviation R 2 Class 1 (Masonry) 0.182 0.126 31% 52% 0.81 Class 2 (Non-designed RC) 0.170 0.102 40% 64% 0.80 Class 3 (Low ductility RC) 0.172 0.112 35% 58% 0.81 Class 4 (Medium ductility RC) 0.153 0.094 39% 62% 0.81 Class 5 (High ductility RC) 0.147 0.096 35% 57% 0.82 Variance Reduction 50-64% + Good R 2 Satisfactory performance (given the small number of input parameters) ESG5, Taipei, Taiwan, 15/08/2016

  21. Relative importance of input parameters : synaptic weights 0.6 0.5 Synaptic weight Proportion 0.4 Class 1 Class 2 0.3 Class 3 Class 4 Class 5 0.2 0.1 0 fstruc/fsoil Impedance Contrast PGA ESG5, Taipei, Taiwan, 15/08/2016

  22. Dependence of damage increment on SSS inputs (example: class 3 - Low Ductility RC) Pga (m/s 2 ) 0.05 0.5 2 4 Scale for D soil - D rock C=20 C=10 C = 5 C = 2 ESG5, Taipei, Taiwan, 15/08/2016

  23. Outline Introduction Proof of concept : comprehensive numerical simulation Robustness and field applicability Field applicability : site amplification proxy NL soil behavior (MDOF) ESG5, Taipei, Taiwan, 15/08/2016

  24. Fiel applicability : Input parameters ✔ Loading : PGA ✔ Spectral coincidence : fstruct / fsoil ✔ Building mechanical behavior : typology class ✗ Site amplification : velocity contrast Cv  ? Other site amplification proxies : V S30 , V S10 , A 0HV , …. ESG5, Taipei, Taiwan, 15/08/2016

  25. Numerical simulation of ambient noise After Bonnefoy-Claudet et al., (2006) Step 1: Definition of sources – receiver configuration sources receiver Step 2: Computation of Greens functions : DWN [Hisada, 1995] Step 3: Summation of all the individual noise synthetics in the time domain. Total ambient noise synthetics for each of the 887 soil profiles (5-10 min) ESG5, Taipei, Taiwan, 15/08/2016

  26. Derivation and check of the "expected" H/V spectral ratio Geopsy ESG5, Taipei, Taiwan, 15/08/2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend