update on mellin barnes approximants to hvp
play

Update on Mellin-Barnes Approximants to HVP . . . Eduardo de - PowerPoint PPT Presentation

. Update on Mellin-Barnes Approximants to HVP . . . Eduardo de Rafael Aix-Marseille Universit e, Univ. Toulon, CNRS, CPT, Marseille, France 21st June 2018 Second Workshop of the Muon g 2 Theory Initiative MAINZ June 2018 Talk Based


  1. . Update on Mellin-Barnes Approximants to HVP . . . Eduardo de Rafael Aix-Marseille Universit´ e, Univ. Toulon, CNRS, CPT, Marseille, France 21st June 2018 Second Workshop of the Muon g − 2 Theory Initiative MAINZ June 2018 Talk Based on: E.de R. Phys. Rev. (2017), J. Charles, D. Greynat, E.de R. Phys.Rev. (2018): ArXiv:1712.02202v3. Work in progress with J´ erˆ ome Charles and David Greynat.

  2. . HVP Contribution to the Muon Anomaly . Hadronic Spectral Function Representation . . ∫ 1 ∫ ∞ x 2 ( 1 − x ) = α dt 1 a HVP dx π Im Π( t ) µ x 2 + t π t µ ( 1 − x ) 4 m 2 0 m 2 π σ ( t ) [ e + e − → ( γ ) → Hadrons ] = 4 π 2 α 1 Im Π( t ) . . . t π . Euclidean Hadronic Self-Energy Representation B.E. Lautrup-E. de Rafael ’69 , EdeR ’94 , T. Blum ’03 . . ∫ 1 x 2 ∫ ∞ 1 − x m 2 = α dt 1 µ a HVP dx ( 1 − x ) π Im Π( t ) , µ π t x 2 t + 1 − x m 2 4 m 2 0 µ π � �� � Dispersion Relation ∫ 1 ( ) x 2 = − α Q 2 ≡ 1 − x m 2 dx ( 1 − x ) Π . µ π 0 � �� � Accessible via LQCD . . . EdeR Mellin-Barnes Approximants to HVP

  3. . Mellin- Barnes Representation EdeR’14 ∫ 1 ∫ ∞ x 2 ( 1 − x ) = α dt 1 a HVP π Im Π( t ) dx µ x 2 + t π t µ ( 1 − x ) 4 m 2 0 m 2 π ∫ 1 ∫ ∞ m 2 = α dt 1 1 µ dx x 2 π Im Π( t ) , π t t x2 1 − x m 2 4 m 2 0 µ π 1 + t ( ) − s x2 cs + i ∞ 1 − x m2 ∫ µ 1 1 Inserting = ds Γ( s )Γ( 1 − s ) and integrating over x x2 2 π i t 1 − x m2 cs − i ∞ µ 1 + t Mellin-Barnes Representation c s + i ∞ ( ) − s ) m 2 ∫ m 2 ( α 1 µ µ a HVP = F ( s ) M ( s ) , c s ≡ Re ( s ) ∈ ] 0 , 1 [ ds µ π t 0 2 π i t 0 c s − i ∞ t 0 = 4 m 2 F ( s ) = − Γ( 3 − 2 s ) Γ( − 3 + s ) Γ( 1 + s ) , π ; ( t ) s − 1 1 ∫ ∞ dt M ( s ) = π Im Π( t ) t t 0 t 0 � �� � Mellin Transform of the Spectral Function EdeR Mellin-Barnes Approximants to HVP

  4. . Properties of the Mellin Transform of the Spectral Function ( t ∫ ∞ ) s − 1 1 dt 1 t ≥ t 0 = 4 m 2 M ( s ) = π Im Π( t ) , π Im Π( t ) ≥ 0 π ± . for t t 0 t 0 . Complete Monotonicity . . The Positivity of 1 π Im Π( t ) implies that M ( s ) and all its derivatives are Monotonically Increasing functions for −∞ < s < 1 , with extension to the full complex s-plane by Analytic Continuation. . . . . Spectral Function Moments: M ( s = 0 , − 1 , − 2 , · · · ) . . ∞ ( t 0 ( ) ) 1 + n 1 ∫ = ( − 1 ) n + 1 ∂ n + 1 dt ( n + 1 )! ( t 0 ) n + 1 ( ∂ Q 2 ) n + 1 Π( Q 2 ) π Im Π( t ) , n = 0 , 1 , 2 , · · · t t Q 2 = 0 t 0 � �� � � �� � LQCD and / or Dedicated Experiment Experiment . . . . The Leading Moment is an upper bound to a HVP ( J.S. Bell-EdeR ’69 ) µ . . ( α ) 1 ∫ ∞ m 2 m 2 ( ) ≤ α 1 dt t 0 1 ∂ µ µ a HVP ∂ Q 2 Π( Q 2 ) π Im Π( t ) = − t 0 µ π 3 t 0 t t π 3 t 0 4 m 2 Q 2 = 0 π � �� � � �� � LQCD M ( 0 ) . . . EdeR Mellin-Barnes Approximants to HVP

  5. . Mellin-Barnes Approximants Ramanujan’s Master Theorem (-G.H. Hardy’s proof-) ( ) ( ) s − 1 ∫ ∞ Q 2 Q 2 d t 0 t 0 0 {( ( ) 2 } ) M ( 0 ) − Q 2 Q 2 − t 0 Q 2 Π( Q 2 ) ≡ M ( − 1 ) + M ( − 2 ) + · · · = Γ( s )Γ( 1 − s ) M ( s ) t 0 t 0 Q 2 → 0 Convergence of Discrete Moments M ( − n ) to the Full Mellin Transform M ( s ) ( − n ⇒ s ) . Marichev’s Class of Mellin Transforms Superpositions of Standard Products of gamma functions of the type: Γ( a i − s )Γ( c j + s ) ∑ ∏ M ( s ) = λ n , a i , b k , c j , d l constants λ n Γ( b k − s )Γ( d l + s ) , n i , j , k , l Practically all functions in Mathematical Physics have Mellin transforms of this type. We propose to consider Mellin-Approximants to M HVP ( s ) of this type, restricted by QCD-properties to the subclass: N Γ( a k − s ) ∑ ∏ M N ( s ) = λ n Γ( b k − s ) n k = 1 with λ n , a i , b k , c j , d l constrained by Monotonicity, and fixed by Matching to Input Moments. EdeR Mellin-Barnes Approximants to HVP

  6. . QED Vacuum Polarization Test J. Mignaco-E. Remiddi ’69 ( α ) 3 { 673 108 − 41 81 π 2 − 4 9 π 2 log ( 2 ) − 4 9 π 2 log 2 ( 2 ) + 4 7 9 log 4 ( 2 ) − 270 π 4 a VP = µ π ( α [ ]} ) 3 + 13 18 ζ ( 3 ) + 32 4 , 1 = 0 . 0528707 · · · 3 PolyLog 2 π ( α ) 3 Results from Mellin Approximants M N ( s ) in units of π Input Moments Numerical result Accuracy M ( 0 ) 0 . 0500007 5 % M ( 0 ) , M ( − 1 ) 0 . 0531447 0 . 5 % M ( 0 ) , M ( − 1 ) , M ( − 2 ) 0 . 0528678 0 . 004 % M ( 0 ) , M ( − 1 ) , M ( − 2 ) , M ( − 3 ) 0 . 0528711 0 . 00075 % M ( 0 ) , M ( − 1 ) , M ( − 2 ) , M ( − 3 ) , M ( − 4 ) 0 . 0528706 0 . 00018 % Convergence of Mellin-Approximants tested numerically up to N = 9 EdeR Mellin-Barnes Approximants to HVP

  7. . QED (fourth order) Fast Convergence for a VP µ � � a VP µ ( N ) − a VP � � µ ( exact ) Logarithmic Plot of � versus number of input moments � � a VP µ ( exact ) � Convergence speed for the muon anomaly 1 0.001 10 - 6 10 - 9 0 2 4 6 8 nb of input moments EdeR Mellin-Barnes Approximants to HVP

  8. from e + e − → Hadrons QCD Test with Experimental Moments kindly provided to us by Alex Keshavarzi and Thomas Teubner . a HVP ( exp . ) = ( 6 . 933 ± 0 . 025 ) × 10 − 8 µ A. Keshavarzi, D. Nomura, T. Teubner, arXiv:1802.02995v1 [hep-ph] M ( s ) Moments and Errors in 10 − 3 units Moment Experimental Value Relative Error M ( 0 ) 0 . 7176 ± 0 . 0026 0 . 36 % M ( − 1 ) 0 . 11644 ± 0 . 00063 0 . 54 % M ( − 2 ) 0 . 03041 ± 0 . 00029 0 . 95 % M ( − 3 ) 0 . 01195 ± 0 . 00017 1 . 4 % M ( − 4 ) 0 . 00625 ± 0 . 00011 1 . 8 % M ( − 5 ) 0 . 003859 ± 0 . 000078 2 . 0 % · · · · · · · · · Results from Mellin Approximants in 10 − 8 units a HVP µ Input Moments Type of Approximant Central Value Stat. Uncert. s = 0 N = ( 1 ) 6 . 991 0 . 023 s = 0 , − 1 N = ( 2 ) 6 . 970 0 . 024 s = 0 , − 1 , − 2 N = ( 2 ) + ( 1 ) 6 . 957 0 . 025 s = 0 , − 1 , − 2 , − 3 N = ( 2 ) + ( 1 ) + ( 1 ) 6 . 932 0 . 025 EdeR Mellin-Barnes Approximants to HVP

  9. . Results for a HVP with Errors µ EdeR Mellin-Barnes Approximants to HVP

  10. . Beta-Function Approximants to HVP ( Particular type of Approximants) Beta-Function Approximants to the Mellin Transform of the Spectral Function N M N ( s ) = α 5 λ n Γ( b n − n ) Γ( n − s ) ∑ , λ 1 = 1 , b n ≥ n + 1 . π 3 Γ( b n − s ) n = 1 � �� � Beta ( n − s , b n − n ) They have simple Hadronic Self-Energy Approximants: ( 1 � N ) Q 2 � − Q 2 Π N ( Q 2 ) = − α 5 λ n Γ( b n − n ) n ∑ � Γ( n ) 2 F 1 � b n π 3 t 0 Γ( b n ) t 0 n = 1 � �� � Gauss Hypergeometric Function and Equivalent simple Spectral Functions: N ( 4 m 2 ) n − 1 ( ) b n − n − 1 1 − 4 m 2 1 π Im Π N ( t ) = α 5 ∑ π π θ ( t − 4 m 2 λ n π ) , π 3 t t n = 1 with the matching solutions for λ n and b n ≥ n + 1 constrained by the positivity of 1 π Im Π N ( t ) . EdeR Mellin-Barnes Approximants to HVP

  11. . Example: Results of three superpositions Using the central values of the first five moments from experiment: ( N = 3 ) = 6 . 9335 × 10 − 8 . a HVP µ Shape of the “Equivalent” Spectral Function in α π units: 1.5 1.5 1.0 Im Π t ) 1.0 Im Π t ) 1 0.5 1 0.5 0.0 0.0 0 20 40 60 80 100 2 4 6 8 10 t / t 0 t / t 0 EdeR Mellin-Barnes Approximants to HVP

  12. . Shape of the “Equivalent” Spectral Function Number of Input Moments =9 QCD spectral function approximant , N = 9 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 t / t 0 EdeR Mellin-Barnes Approximants to HVP

  13. . Convergence Test � � a HVP ( N ) − a HVP � � ( exp . ) µ µ Log Plot of � versus N � � a HVP ( exp . ) � µ Convergence speed for the muon anomaly 0.005 0.001 5. × 10 - 4 1. × 10 - 4 5. × 10 - 5 1. × 10 - 5 0 2 4 6 8 nb of input moments EdeR Mellin-Barnes Approximants to HVP

  14. . Conclusions We claim that, from an Accurate LQCD Determination , of the first few moments, one could reach an evaluation of a HVP with competitive µ precision -or even higher- than the present experimental determinations. Accurate determination of the First Moment is an excellent Test ( α ) 1 ∫ ∞ m 2 ( ) ≤ α 1 dt 1 ∂ µ a HVP − m 2 ∂ Q 2 Π( Q 2 ) π Im Π( t ) = µ µ π 3 t t π 3 4 m 2 Q 2 = 0 π � �� � � �� � LQCD and / or DEDICATED EXPERIMENT M ( 0 ) from experiment The fact that the Π( Q 2 ) Beta-Function Approximants are simple superpositions of simple Gauss-Hypergeometric-Functions offers the possibility of using LQCD information on values of Π( Q 2 ) at fixed Q 2 -values , or an Alternative Input to Moments. EdeR Mellin-Barnes Approximants to HVP

  15. . Breit-Wigner plus Theta-like Spectral Function           ( α )   1 Γ M N c ∑ f 2 V M 2 q 2 π Im Π( t ) = θ ( t − t 0 ) + 3 θ ( t − t pQCD ) ( t − M 2 ) 2 + Γ 2 M 2 f π     f   � �� �     ⇒ πδ ( t − M 2 ) for Γ → 0 Shape of this Spectral Function (M = M ρ , Γ = Γ ρ , t 0 = 4 m 2 π , f 2 V = 0 . 51 ). 2.5 2.0 Im Π x ) 1.5 1.0 1 0.5 0.0 0 2 4 6 8 10 t x = M 2 EdeR Mellin-Barnes Approximants to HVP

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend