latency reliability tradeoff in short packet
play

Latency-Reliability Tradeoff in Short-Packet Communications - PowerPoint PPT Presentation

Latency-Reliability Tradeoff in Short-Packet Communications Giuseppe Durisi Chalmers, Sweden May 2016 joint work with J. Ostman, W. Yang, T. Koch, and Y. Polyanskiy 5G: beyond enhanced broadband enhanced broadband higher data rates 5G


  1. Latency-Reliability Tradeoff in Short-Packet Communications Giuseppe Durisi Chalmers, Sweden May 2016 joint work with J. ¨ Ostman, W. Yang, T. Koch, and Y. Polyanskiy

  2. 5G: beyond enhanced broadband enhanced broadband higher data rates 5G low latency massive number high reliability of devices massive MTC mission critical MTC 2 / 25 G. Durisi

  3. Low-latency ultra-reliable MTC LTE 5G • Long packets (500 bytes) • Short packets (10 bytes) • PEP of 10 − 1 at 5 ms latency • 1 ms latency • 10 − 5 − 10 − 9 PEP • High reliability through retransmissions 3 / 25 G. Durisi

  4. This talk Understand the tradeoff between reliability, latency, and throughput • How to deal with fading, how to use MIMO The approach • Rely on closed-form bounds and approximations The main tool Finite-blocklength information theory 4 / 25 G. Durisi

  5. A brief introduction to FBL IT 1 packet error probability 0 . 8 max. coding rate possible 0 . 6 0 . 4 not possible 0 . 2 0 rate → Beginning of last century 5 / 25 G. Durisi

  6. A brief introduction to FBL IT 1 packet error probability 0 . 8 0 . 6 0 . 4 blocklength 0 . 2 0 rate → 1948: Shannon, channel capacity 5 / 25 G. Durisi

  7. A brief introduction to FBL IT 1 packet error probability 0 . 8 0 . 6 0 . 4 0 . 2 0 rate → Vertical asymptotics ⇒ error exponent (Gallager,. . . ) 5 / 25 G. Durisi

  8. A brief introduction to FBL IT 1 packet error probability 0 . 8 0 . 6 0 . 4 0 . 2 0 rate → Horizontal asymptotics ⇒ strong converse, fixed-error asymptotics (Wolfowitz, Strassen,. . . ) 5 / 25 G. Durisi

  9. A brief introduction to FBL IT 1 packet error probability 0 . 8 0 . 6 0 . 4 0 . 2 0 rate → Today: tight bounds and accurate approximations (Hayashi, Polyanskiy, Poor and Verd´ u,. . . ) 5 / 25 G. Durisi

  10. AWGN channel, SNR = 0 dB, ǫ = 10 − 3 capacity 0.5 0.4 rate, R 0.3 0.2 0.1 100 300 500 700 900 1100 1300 1500 1700 1900 blocklength, n C awgn ( ρ ) = 1 2 log(1 + ρ ) 6 / 25 G. Durisi

  11. AWGN channel, SNR = 0 dB, ǫ = 10 − 3 capacity 0.5 meta-converse bound (PPV ’10) 0.4 rate, R 0.3 achievability bound (Shannon ’59) 0.2 0.1 100 300 500 700 900 1100 1300 1500 1700 1900 blocklength, n 6 / 25 G. Durisi

  12. AWGN channel, SNR = 0 dB, ǫ = 10 − 3 capacity 0.5 meta-converse bound (PPV ’10) 0.4 normal approximation rate, R 0.3 achievability bound (Shannon ’59) 0.2 0.1 100 300 500 700 900 1100 1300 1500 1700 1900 blocklength, n C awgn ( ρ ) = 1 V awgn ( ρ ) = ρ (2 + ρ ) 2 log(1 + ρ ) ; 2(1 + ρ ) 2 6 / 25 G. Durisi

  13. AWGN channel, SNR = 0 dB, ǫ = 10 − 3 capacity 0.5 meta-converse bound (PPV ’10) 0.4 normal approximation rate, R 0.3 achievability bound (Shannon ’59) 0.2 0.1 100 300 500 700 900 1100 1300 1500 1700 1900 blocklength, n � V awgn ( ρ ) Q − 1 ( ǫ ) + 1 log n R ∗ ( n, ǫ ) ≈ C awgn ( ρ ) − n 2 n 6 / 25 G. Durisi

  14. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n 7 / 25 G. Durisi

  15. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n • Neyman-Pearson Beta function: β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) 7 / 25 G. Durisi

  16. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n • Neyman-Pearson Beta function: β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Performance of a ( n, M, ǫ ) -code [ Vazquez-Vilar et al. 2015 ] log M = 1 1 n inf Q Y n log n β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) 7 / 25 G. Durisi

  17. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n • Neyman-Pearson Beta function: β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Performance of a ( n, M, ǫ ) -code [ Vazquez-Vilar et al. 2015 ] log M = 1 1 n inf Q Y n log n β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Metaconverse bound [ Polyanskiy et al., 2010 ] R ∗ ( n, ǫ ) ≤ 1 1 n sup log β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) P Xn 7 / 25 G. Durisi

  18. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n • Neyman-Pearson Beta function: β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Performance of a ( n, M, ǫ ) -code [ Vazquez-Vilar et al. 2015 ] log M = 1 1 n inf Q Y n log n β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Metaconverse bound [ Polyanskiy et al., 2010 ] R ∗ ( n, ǫ ) ≤ 1 1 n sup log β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) P Xn • Achievability bounds of same form are available [latest one at ISIT’16] 7 / 25 G. Durisi

  19. Fundamental tool: binary hypothesis testing • Binary hypothesis testing between P X n P Y n | X n and P X n Q Y n • Neyman-Pearson Beta function: β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Performance of a ( n, M, ǫ ) -code [ Vazquez-Vilar et al. 2015 ] log M = 1 1 n inf Q Y n log n β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) • Metaconverse bound [ Polyanskiy et al., 2010 ] R ∗ ( n, ǫ ) ≤ 1 1 n sup log β 1 − ǫ ( P X n P Y n | X n , P X n Q Y n ) P Xn • Achievability bounds of same form are available [latest one at ISIT’16] • Asymptotic analysis through Berry Esse´ en CLT 7 / 25 G. Durisi

  20. Actual codes: bi-AWGN, ǫ = 10 − 3 1 Turbo R=1/3 Turbo R=1/6 Turbo R=1/4 0 . 9 Voyager Normalized rate Galileo HGA Turbo R=1/2 0 . 8 Cassini/Pathfinder Galileo LGA BCH (Koetter-Vardy) BCH+OSD 0 . 7 Polar+CRC R=1/2, L=32 Polar+CRC R=1/2, L=256 ME LDPC R=1/2, BP 0 . 6 10 2 10 3 10 4 10 5 Blocklength, n Y. Polyanskiy, “Channel coding: non-asymptotic fundamental limits,” Ph.D. dissertation, Princeton University, Princeton, NJ, Nov. 2010. G. Durisi, T. Koch, and P. Popovski, “Towards massive, ultra-reliable, and low-latency wireless communication with short packets,” Proc. IEEE , 2016 8 / 25 G. Durisi

  21. A finite-blocklength problem in 5G 12 subcarriers 14 OFDM symbols 9 / 25 G. Durisi

  22. A finite-blocklength problem in 5G P P 12 subcarriers P P 14 OFDM symbols 9 / 25 G. Durisi

  23. A finite-blocklength problem in 5G P P 12 subcarriers P P 14 OFDM symbols 9 / 25 G. Durisi

  24. A finite-blocklength problem in 5G P P 12 subcarriers P P 14 OFDM symbols 9 / 25 G. Durisi

  25. MIMO Rayleigh block-fading model Fading Process H i X i Y i Encoder Decoder Z i ∼ CN (0 , N 0 ) • AWGN channel with fluctuating SNR Y i = H i X i + Z i , i = 1 , . . . , n • Fading process unknown at TX and RX (no CSI) 10 / 25 G. Durisi

  26. MIMO Rayleigh block-fading model n c n = n c `, ` ∈ N • n c : coherence interval • ℓ : number of time-frequency diversity branches • m t × m r MIMO channel 11 / 25 G. Durisi

  27. Definition of ( ℓ, n c , M, ǫ, ρ ) code n c W n ˆ J X n Y n J + encoder decoder n = n c `, ` ∈ N • Message J ∈ { 1 , 2 , . . . , M } • Encoder maps J to a codeword [ X 1 , . . . , X ℓ ] • Power constraint: tr { X H k X k } = n c ρ • Decoder guesses J from [ Y 1 , . . . , Y ℓ ] • Maximum probability of error 1 ≤ j ≤ M Pr { ˆ J � = J | J = j } ≤ ǫ max • Rate: (log M ) / ( n c ℓ ) 12 / 25 G. Durisi

  28. Maximum coding rate n c W n ˆ J J X n Y n + encoder decoder n = n c `, ` ∈ N Maximum coding rate � log M � R ∗ ( ℓ, n c , ǫ ) = sup : exists ( ℓ, n c , M, ǫ, ρ ) -code n c ℓ 13 / 25 G. Durisi

  29. Our example: LTE evolution towards 5G • packet length: coherence interval n c (log scale) 168 84 42 24 12 8 6 4 168 symbols 3 • 14 OFDM symbols, 12 bit/channel use 2 . 5 2 spacing tones apart in frequency tones per symbol = ⇒ 1 . 5 spacing OFDM symbols apart in time 1 • PEP ǫ = 10 − 5 0 . 5 0 • SNR ρ = 6 dB 1 2 4 7 14 21 28 42 time-frequency diversity branches ℓ (log scale) • 2 × 2 MIMO n c n = n c `, ` ∈ N 14 / 25 G. Durisi

  30. Our example: LTE evolution towards 5G • packet length: coherence interval n c (log scale) 168 84 42 24 12 8 6 4 168 symbols 3 • 14 OFDM symbols, 12 bit/channel use 2 . 5 2 spacing tones apart in frequency tones per symbol = ⇒ 1 . 5 spacing OFDM symbols apart in time 1 • PEP ǫ = 10 − 5 0 . 5 0 • SNR ρ = 6 dB 1 2 4 7 14 21 28 42 time-frequency diversity branches ℓ (log scale) • 2 × 2 MIMO n c n = n c `, ` ∈ N A. Lozano and N. Jindal, “Transmit diversity vs. spatial multiplexing in modern MIMO systems,” IEEE Trans. Wireless Commun. , vol. 9, no. 1, pp. 186–197, Sep. 2010. 14 / 25 G. Durisi

  31. Asymptotic IT: outage capacity n c n = n c `, ` ∈ N 15 / 25 G. Durisi

  32. Asymptotic IT: outage capacity n c →∞ R ∗ ( ℓ, n c , ǫ ) = C out ,ǫ lim n c = sup { R : inf P out ( R ) ≤ ǫ } n = n c `, ` ∈ N � ℓ � � log det( I m r + H H P out ( R ) = Pr k Q k H k ) ≤ ℓR k =1 15 / 25 G. Durisi

  33. Asymptotic IT: outage capacity n c →∞ R ∗ ( ℓ, n c , ǫ ) = C out ,ǫ lim n c = sup { R : inf P out ( R ) ≤ ǫ } n = n c `, ` ∈ N � ℓ � � log det( I m r + H H P out ( R ) = Pr k Q k H k ) ≤ ℓR k =1 • Same as when CSI is available at RX; CSI acquisition cost is lost 15 / 25 G. Durisi

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend