university of belgrade faculty of physics
play

University of Belgrade Faculty of Physics Noncommutativity and - PowerPoint PPT Presentation

University of Belgrade Faculty of Physics Noncommutativity and Nonassociativity of Closed Bosonic String on T-dual Toroidal Backgrounds Presenter: Danijel Obri September, 2018 2. septembar 2018 1 / 15 Table of Contents 1 Introduction 2


  1. University of Belgrade Faculty of Physics Noncommutativity and Nonassociativity of Closed Bosonic String on T-dual Toroidal Backgrounds Presenter: Danijel Obrić September, 2018 2. septembar 2018 1 / 15

  2. Table of Contents 1 Introduction 2 Bosonic strings Bosonic strings in background fields 1 Choice of background fields 2 3 T-dualization T-dualization along x direction 1 T-dualization along y direction 2 T-dualization along z direction 3 4 Noncommutativity and nonassociativity relations Noncommutativity relations 1 Nonassociativity relations 2 5 Conclusion 2. septembar 2018 2 / 15

  3. Introduction 1 Noncommutativity of coordiantes 2 T-duality 3 Generalized Buscher procedure 2. septembar 2018 3 / 15

  4. Bosonic strings Bosonic strings in background fields The action of the closed bosonic string in the presence of background fields is given by d 2 ξ √− g 2 g αβ G µν + ǫ αβ � �� 1 Φ � ∂ α x µ ∂ β x ν + 4 k π R ( 2 ) � S = k √− g B µν . (1) Σ Keeping conformal symmetry at quantum level demands that background fields obey following equations. R µν − 1 ρσ + 2 D µ ∂ ν Φ = 0 , (2) 4 B µρσ B ν D ρ B ρ µν − 2 ∂ ρ Φ B ρ µν = 0 , (3) 4 ( ∂ Φ) 2 − 4 D µ ∂ µ Φ + 1 12 B µνρ B µνρ − R = 0 . (4) B µνρ = ∂ µ B νρ + ∂ ν B ρµ + ∂ ρ B µν is field strength tensor of Kalb Ramond field. 2. septembar 2018 4 / 15

  5. Bosonic strings Bosonic strings in background fields We will work in D = 3 dimensions with following background fields:     0 0 1 0 0 Hz  ,  . B µν = − Hz 0 0 G µν = 0 1 0 (5)   0 0 0 0 0 1 Final form of our action, in world-sheet light-cone coordinates ξ ± = 1 2 ( τ ± σ ) , ∂ ± = ∂ τ ± ∂ σ . is then: � d 2 ξ ± � S = k Hz ( ∂ + x ∂ − y − ∂ + y ∂ − x ) Σ + 1 � 2 ( ∂ + x ∂ − x + ∂ + y ∂ − y + ∂ + z ∂ − z ) (6) . 2. septembar 2018 5 / 15

  6. T-dualization T-dualization along x direction Replacing partial with covariant derivatives (7) ∂ ± x → D ± x = ∂ ± x + v ± . Removal of unphysical degrees of freedom S add = k � d 2 ξ y 1 ( ∂ + v − − ∂ − v + ) . (8) 2 Σ Gauge fixing, x = const . � d 2 ξ [ 1 S fix = k 2 ( v + v − + ∂ + y ∂ − y + ∂ + z ∂ − z ) + v + Hz ∂ − y Σ − ∂ + yHzv − + 1 2 y 1 ( ∂ + v − − ∂ − v + )] . (9) Equations of motion are: F + − = ∂ + v − − ∂ − v + = 0 → v ± = ∂ ± x (10) v ± = ± ∂ ± y 1 ± 2 Hz ∂ ± y (11) 2. septembar 2018 6 / 15

  7. T-dualization T-dualization along x direction Obtaining T-dual action � � 1 2 ( ∂ + y 1 ∂ − y 1 + ∂ + y ∂ − y + ∂ + z ∂ − z ) d 2 ξ x S = k Σ + ∂ + y 1 Hz ∂ − y + ∂ + yHz ∂ − y 1 � . (12) Getting T-dual transformation laws ∂ ± x ∼ x ∼ = y ′ 1 + 2 Hzy ′ , = ± ∂ ± y 1 ± 2 Hz ∂ ± y → ˙ (13) π x = δ S π x ∼ x − 2 Hzy ′ ) = ky ′ x = k ( ˙ → 1 . (14) δ ˙ 2. septembar 2018 7 / 15

  8. T-dualization T-dualization along y direction Repeating previous procedure for y coordinate we obtain � � 1 d 2 ξ S fix = k 2 ( ∂ + y 1 ∂ − y 1 + v + v − + ∂ + z ∂ − z ) + ∂ + y 1 Hzv − Σ + v + Hz ∂ − y 1 + 1 � 2 y 2 ( ∂ + v − − ∂ − v + ) . (15) Equation of motion are: ∂ + v − − ∂ − v + = 0 → v ± = ∂ ± y , (16) v ± = ± ∂ ± y 2 − 2 Hz ∂ ± y 1 . (17) 2. septembar 2018 8 / 15

  9. T-dualization T-dualization along y direction Twice dualized action is given as � � 1 d 2 ξ xy S = k 2 ( ∂ + y 1 ∂ − y 1 + ∂ + y 2 ∂ − y 2 + ∂ + z ∂ − z ) Σ � + ∂ + y 2 Hz ∂ − y 1 − ∂ + y 1 Hz ∂ − y 2 . (18) T-dual transformation law: ∂ ± y ∼ y ∼ = y ′ = ± ∂ ± y 2 − 2 Hz ∂ ± y 1 → ˙ 2 − 2 Hz ˙ y 1 , (19) π y = δ S π y ∼ y + 2 Hzx ′ ) = ky ′ y = k ( ˙ → 2 . (20) δ ˙ 2. septembar 2018 9 / 15

  10. T-dualization T-dualization along z direction Introduction of covariant derivative and invariant coordinate � z inv = d ξ α D α z = z ( ξ ) − z ( ξ 0 ) + ∆ V , ∂ ± z → D ± z = ∂ ± z + v ± ; (21) P where � � ( d ξ + v + + d ξ − v − ) . d ξ α v α = ∆ V = (22) P P After removing additional degrees of freedom and fixing gauge with z ( ξ ) = z ( ξ 0 ) we have following action: � � d 2 ξ S fix = k − H ∆ V ( ∂ + y 1 ∂ − y 2 − ∂ + y 2 ∂ − y 1 ) Σ + 1 2 ( ∂ + y 1 ∂ − y 1 + ∂ + y 2 ∂ − y 2 + ∂ + z ∂ − z ) + 1 � 2 y 3 ( ∂ + v − − ∂ − v + ) . (23) 2. septembar 2018 10 / 15

  11. T-dualization T-dualization along z direction Equations of motion are: ∂ + v − − ∂ − v + = 0 (24) → v ± = ∂ ± z , v ± = ± ∂ ± y 3 − 2 β ∓ , (25) where β ± = ± 1 2 H ( y 1 ∂ ∓ y 2 − y 2 ∂ ∓ y 1 ) . (26) Fully T-dualized action is: � 1 � d 2 ξ xyz S = k 2 ( ∂ + y 1 ∂ − y 1 + ∂ + y 2 ∂ − y 2 + ∂ + y 3 ∂ − y 3 ) Σ � − ∂ + y 1 H ∆ ¯ y 3 ∂ − y 2 + ∂ + y 2 H ∆ ¯ y 3 ∂ − y 1 . (27) T-dual transformation laws are: ∂ ± z ∼ z ∼ = ± ∂ ± y 3 − 2 β ∓ = y ′ 3 + H ( y 1 y ′ 2 − y 2 y ′ → ˙ 1 ) , (28) π z = δ S 3 + kH ( xy ′ − yx ′ ) . π z ∼ = ky ′ z = k ˙ z → (29) δ ˙ 2. septembar 2018 11 / 15

  12. Noncommutativity and nonassociativity relations Noncommutativity relations Transformation laws in canonical form are: ′ = 1 2 = 1 3 = 1 k π z − H ( xy ′ − yx ′ ) . y ′ y ′ y 1 k π x , k π y , (30) Only non-trivial Poisson brackets are: = − H � � σ ) } ∼ { y 1 ( σ ) , y 3 (¯ 2 y ( σ ) − y (¯ σ ) θ ( σ − ¯ σ ) , (31) k = H � � σ ) } ∼ { y 2 ( σ ) , y 3 (¯ 2 x ( σ ) − x (¯ σ ) θ ( σ − ¯ σ ) . (32) k For σ − ¯ σ = 2 π we have = − H � � { y 1 ( σ + 2 π ) , y 3 ( σ ) } ∼ 4 π N y + y ( σ ) (33) , k = H � � { y 2 ( σ + 2 π ) , y 3 ( σ ) } ∼ 4 π N x + y ( σ ) , (34) k where N x and N y are winding numbers defined as x ( σ + 2 π ) − x ( σ ) = 2 π N x , y ( σ + 2 π ) − y ( σ ) = 2 π N y (35) 2. septembar 2018 12 / 15

  13. Noncommutativity and nonassociativity relations Nonassociativity relations Nonassociativity relation is defined as { y 1 ( σ 1 ) , y 2 ( σ 2 ) , y 3 ( σ 3 ) } ≡ { y 1 ( σ 1 ) , { y 2 ( σ 2 ) , y 3 ( σ 3 ) }} + { y 2 ( σ 2 ) , { y 3 ( σ 3 ) , y 1 ( σ 1 ) }} + { y 3 ( σ 3 ) , { y 1 ( σ 1 ) , y 2 ( σ 2 ) }} = − 2 H � ∼ θ ( σ 1 − σ 2 ) θ ( σ 2 − σ 3 ) k 2 � + θ ( σ 2 − σ 1 ) θ ( σ 1 − σ 3 ) + θ ( σ 1 − σ 3 ) θ ( σ 3 − σ 2 ) (36) . For σ 2 = σ 3 = σ and σ 1 = σ + 2 π we get: = 2 H { y 1 ( σ + 2 π ) , y 2 ( σ ) , y 3 ( σ ) } ∼ (37) k . 2. septembar 2018 13 / 15

  14. Conclusion After two T-dualizations we had that Q flux theory is commutative. Closed string noncommuatativity and nonassociativity are consequence of the fact that Kalb-Ramond field is coordinate dependent. Parameters of noncommutativity and nonassociativity are proportional to the field strength H. In ordinary space, coordinate dependent background is a sufficient condition for closed string noncommutativity. 2. septembar 2018 14 / 15

  15. THANKS FOR YOUR ATTENTION 2. septembar 2018 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend