noncommutative scalar quasinormal modes of
play

Noncommutative Scalar Quasinormal modes of RN Black Hole Nikola - PowerPoint PPT Presentation

Noncommutative Scalar Quasinormal modes of RN Black Hole Nikola Konjik (University of Belgrade) 9 - 14 September 2019 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 1 / 21 Content 1 Introduction 2


  1. Noncommutative Scalar Quasinormal modes of RN Black Hole Nikola Konjik (University of Belgrade) 9 - 14 September 2019 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 1 / 21

  2. Content 1 Introduction 2 Noncommutative geometry 3 Angular noncommutativity 4 Scalar U ( 1 ) gauge theory in RN background 5 Continued fractions 6 Outlook Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 2 / 21

  3. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  4. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Possible solutions • String Theory Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  5. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Possible solutions • String Theory • Quantum loop gravity Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  6. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Possible solutions • String Theory • Quantum loop gravity • Noncommutative geometry Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  7. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Possible solutions • String Theory • Quantum loop gravity • Noncommutative geometry • . . . Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  8. Introduction Physics between LHC and Planck scale → problem of modern theoretical physics Possible solutions • String Theory • Quantum loop gravity • Noncommutative geometry • . . . Detection of the gravitational waves can help better understanding of structure of space-time Dominant stage of the perturbed BH are dumped oscillations of the geometry or matter fields (Quasinormal modes) Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 3 / 21

  9. Noncommutative geometry • Local coordinates x µ are changed with hermitian operators ˆ x µ Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 4 / 21

  10. Noncommutative geometry • Local coordinates x µ are changed with hermitian operators ˆ x µ x µ , ˆ x ν ] = i θ µν • Algebra of operators is [ˆ Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 4 / 21

  11. Noncommutative geometry • Local coordinates x µ are changed with hermitian operators ˆ x µ x µ , ˆ x ν ] = i θ µν • Algebra of operators is [ˆ x ν ≥ 1 x µ ∆ˆ 2 | θ µν | • For θ = const ⇒ ∆ˆ Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 4 / 21

  12. Noncommutative geometry • Local coordinates x µ are changed with hermitian operators ˆ x µ x µ , ˆ x ν ] = i θ µν • Algebra of operators is [ˆ x ν ≥ 1 x µ ∆ˆ 2 | θ µν | • For θ = const ⇒ ∆ˆ • The notion of a point loses its meaning ⇒ we describe NC space with algebra of functions (theorems of Gelfand and Naimark) Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 4 / 21

  13. Noncommutative geometry • Local coordinates x µ are changed with hermitian operators ˆ x µ x µ , ˆ x ν ] = i θ µν • Algebra of operators is [ˆ x ν ≥ 1 x µ ∆ˆ 2 | θ µν | • For θ = const ⇒ ∆ˆ • The notion of a point loses its meaning ⇒ we describe NC space with algebra of functions (theorems of Gelfand and Naimark) Approaches to NC geometry ⋆ -product, NC spectral triple, NC vierbein formalism, matrix models, . . . Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 4 / 21

  14. NC space-time from the angular twist Twist is used to deform a symmetry Hopf algebra Twist F is invertible bidifferential operator from the universal enveloping algebra of the symmetry algebra We work in 4D and deform the space-time by the following twist 2 θ ab X a � X b F = e − i [ X a , X b ] = 0, a,b=1,2 X 1 = ∂ 0 and X 2 = x ∂ y − y ∂ x − ia 2 ( ∂ 0 ⊗ ( x ∂ y − y ∂ x ) − ( x ∂ y − y ∂ x ) ⊗ ∂ 0 ) F = e Bilinear maps are deformed by twist! Bilinear map µ µ : X × Y → Z µ ⋆ = µ F − 1 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 5 / 21

  15. Commutation relations between coordinates are: x 0 , ˆ [ˆ x ] = ia ˆ y , All other commutation relations are zero x 0 , ˆ [ˆ y ] = − ia ˆ x Our approach: deform space-time by an Abelian twist to obtain commutation relations Angular twist in curved coordinates X 1 = ∂ 0 and X 2 = ∂ ϕ -supose that metric tensor g µν does not depend on t and ϕ coordinates -Hodge dual becomes same as in commutative case Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 6 / 21

  16. Angular noncommutativity • Product of two plane waves is e − ip · x ⋆ e − iq · x = e − i ( p + ⋆ q ) · x where is p + ⋆ q = R ( q 3 ) p + R ( − p 3 ) q and   1 0 0 0 � at � at � � 0 cos sin 0   R ( t ) ≡ 2 2 � at � at   � � 0 − sin cos 0   2 2 0 0 0 1 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 7 / 21

  17. Angular noncommutativity • e − ip · x ⋆ e − iq · x ⋆ e − ir · x = e − i ( p + ⋆ q + ⋆ r ) · x gives p + ⋆ q + ⋆ r = R ( r 3 + q 3 ) p + R ( − p 3 + r 3 ) q + R ( − p 3 − q 3 ) r Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 8 / 21

  18. Angular noncommutativity • e − ip · x ⋆ e − iq · x ⋆ e − ir · x = e − i ( p + ⋆ q + ⋆ r ) · x gives p + ⋆ q + ⋆ r = R ( r 3 + q 3 ) p + R ( − p 3 + r 3 ) q + R ( − p 3 − q 3 ) r • General case   N p ( 1 ) + ⋆ ... + ⋆ p ( N ) = p ( k ) p ( k ) � � �  p ( j ) R  − + 3 3 j = 1 1 ≤ k < j j < k ≤ N • Conservation of momentum is broken! Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 8 / 21

  19. Scalar U ( 1 ) ⋆ gauge theory A µ ⋆ dx µ is introduced to the model If a one-form gauge field ˆ A = ˆ through a minimal coupling, the relevant action becomes � � � + � � S [ˆ φ, ˆ d ˆ φ − i ˆ A ⋆ ˆ d ˆ φ − i ˆ A ⋆ ˆ A ] = φ ∧ ⋆ ∗ H φ � µ 2 φ + ⋆ ˆ φǫ abcd e a ∧ ⋆ e b ∧ ⋆ e c ∧ ⋆ e d ˆ − 4 ! � d 4 x √− g ⋆ � φ − µ 2 ˆ � g µν ⋆ D µ ˆ φ + ⋆ D ν ˆ φ + ⋆ ˆ = φ Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 9 / 21

  20. After expanding action and varying with respect to Φ + EOM is � � � − 1 g µν D µ D ν φ − Γ λ 4 θ αβ g µν D µ ( F αβ D ν φ ) − Γ λ µν D λ φ µν F αβ D λ φ � − 2 D µ ( F αν D β φ ) + 2 Γ λ µν F αλ D β φ − 2 D β ( F αµ D ν φ ) = 0 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 10 / 21

  21. Scalar field in the Reissner–Nordström background RN metric tensor is  0 0 0  f − 1 0 0 0   f g µν =  − r 2  0 0 0   − r 2 sin 2 θ 0 0 0 + Q 2 G with f = 1 − 2 MG which gives two horizons ( r + and r − ) r r 2 Q-charge of RN BH M-mass of RN BH Non-zero components of gauge fields are A 0 = − qQ i.e. F r 0 = qQ r 2 r q-charge of scalar field Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 11 / 21

  22. EOM for scalar field in RN space-time rf ∂ t − q 2 Q 2 � 1 r + 2 MG r 2 ∂ r + 2 iqQ 1 � f ∂ 2 t − ∆ + ( 1 − f ) ∂ 2 φ r 2 f − GQ 2 + aqQ ( MG � � r 2 ) ∂ ϕ + rf ∂ r ∂ ϕ φ = 0 r 3 r where a is θ t ϕ Assuming ansatz φ lm ( t , r , θ, ϕ ) = R lm ( r ) e − i ω t Y m l ( θ, ϕ ) we got equation for radial part lm + 2 1 − MG � l ( l + 1 ) − 1 f ( ω − qQ r ) 2 � fR ′′ � � R ′ lm − R lm r 2 r r − GQ 2 − imaqQ ( MG � � r 2 ) R lm + rfR ′ = 0 (1) lm r 3 r Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 12 / 21

  23. NC QNM solutions QNM -special solution of equation -damped oscillations of a perturbed black hole A set of the boudary condition which leads to this solution is the following: at the horizon, the QNMs are purely incoming, while in the infinity the QNMs are purely outgoing Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 13 / 21

  24. Continued fraction method To get form d 2 ψ dy 2 + V ψ = 0 y must be r + r − � � � � y = r + r + − iamqQ ln( r − r + ) − r − − iamqQ ln( r − r − ) r + − r − r + − r − y is modified Tortoise RN coordinate Asymptotic form of the eq. (1) Z out e i Ω y y − 1 − i ω qQ − µ 2 M  − amqQ Ω za y → ∞ Ω     R ( r ) → � �� �  ω − qQ 1 + iam qQ − i y   Z in e r + r + za y → −∞  Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 14 / 21

  25. Combining assymptotic forms, we get general solution in the form ∞ � n + δ � r − r + R ( r ) = e i Ω r ( r − r − ) ǫ � a n (2) r − r − n = 0 Nikola Konjik (University of Belgrade) Belgrade, Serbia 9 - 14 September 2019 15 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend