scalar curvature and gauss bonnet theorem for
play

Scalar Curvature and Gauss-Bonnet Theorem for Noncommutative Tori - PowerPoint PPT Presentation

Scalar Curvature and Gauss-Bonnet Theorem for Noncommutative Tori Farzad Fathizadeh joint with Masoud Khalkhali COSy 2014 1 / 43 Spectral Triples Noncommutative geometric spaces are described by spectral triples: ( A , H , D ) , : A L


  1. Scalar Curvature and Gauss-Bonnet Theorem for Noncommutative Tori Farzad Fathizadeh joint with Masoud Khalkhali COSy 2014 1 / 43

  2. Spectral Triples Noncommutative geometric spaces are described by spectral triples: ( A , H , D ) , π : A → L ( H ) ( ∗ -representation ) , D = D ∗ : Dom ( D ) ⊂ H → H , D π ( a ) − π ( a ) D ∈ L ( H ) . Examples. C ∞ ( M ) , L 2 ( M, S ) , D = Dirac operator � � . C ∞ ( S 1 ) , L 2 ( S 1 ) , 1 ∂ � � . i ∂x 2 / 43

  3. Noncommutative Local Invariants The local geometric invariants such as scalar curvature of ( A, H , D ) are detected by the high frequency behavior of the spectrum of D and the action of A via heat kernel asymptotic expansions of the form ∞ a e − tD 2 � � a j ( a, D 2 ) t ( − n + j ) / 2 , � Trace ∼ t ց 0 a ∈ A. j =0 3 / 43

  4. Noncommutative 2-Torus A θ = C ( T 2 θ ) It is the universal C ∗ -algebra generated by U and V s.t. U ∗ = U − 1 , V ∗ = V − 1 , V U = e 2 πiθ UV, where θ ∈ R is fixed. The geometry of the Kronecker foliation dy = θdx on the ordinary torus R 2 / Z 2 is closely related to the structure of this algebra. A representation of A θ : Uξ ( x ) = e 2 πix ξ ( x ) , ξ ∈ L 2 ( R ) . V ξ ( x ) = ξ ( x + θ ) , 4 / 43

  5. Action of T 2 = ( R 2 π Z ) 2 on A θ and Smooth Elements • s ∈ R 2 , α s : A θ → A θ , α s ( U m V n ) = e is. ( m,n ) U m V n , m, n ∈ Z . • s �→ α s ( a ) is smooth from R 2 to A θ } A ∞ θ := { a ∈ A θ ; a m,n U m V n ∈ A θ ; � � ( a m,n ) ∈ S ( Z 2 ) � = . m,n ∈ Z • ∂  s =0 α s : A ∞ θ → A ∞ δ j = θ .  ∂s j 5 / 43

  6. The Derivations δ 1 , δ 2 and the Volume Form • δ 1 , δ 2 : A ∞ θ → A ∞ θ are defined by: δ 1 ( U ) = U, δ 1 ( V ) = 0 , δ 2 ( U ) = 0 , δ 2 ( V ) = V, a, b ∈ A ∞ δ i ( a b ) = δ i ( a ) b + a δ i ( b ) , θ . • Tracial state ϕ 0 : A θ → C (analog of integration): ϕ 0 ( U m V n ) = 0 ϕ 0 (1) = 1 , if ( m, n ) � = (0 , 0) . 6 / 43

  7. Conformal Structure on A θ (Connes) The Dolbeault operators associated with τ ∈ C , ℑ ( τ ) > 0 are τδ 2 : H 0 → H (1 , 0) , ∂ = δ 1 + ¯ ¯ ∂ = δ 1 + τδ 2 : H 0 → H (0 , 1) . The conformal structure represented by τ is encoded in a ∂ ( b ) ¯ a, b, c ∈ A ∞ � � ψ ( a, b, c ) = − ϕ 0 ∂ ( c ) , θ , which is a positive Hochschild cocycle. 7 / 43

  8. Conformal Perturbation (Connes-Tretkoff) Let h = h ∗ ∈ A ∞ θ and replace the trace ϕ 0 by ϕ : A θ → C , ϕ ( a ) := ϕ 0 ( a e − h ) , a ∈ A θ . ϕ is a KMS state with the modular group σ t ( a ) = e ith a e − ith , a ∈ A θ , and the modular automorphism ∆( a ) := σ i ( a ) = e − h a e h , a ∈ A θ . ϕ ( a b ) = ϕ � b ∆( a ) � , a, b ∈ A θ . 8 / 43

  9. A Spectral Triple ( A ∞ θ , H , D ) H := H ϕ ⊕ H (1 , 0) , � � a 0 a �→ : H → H , 0 a � ∂ ∗ � 0 ϕ D := : H → H , ∂ ϕ 0 τδ 2 : H ϕ → H (1 , 0) . ∂ ϕ := ∂ = δ 1 + ¯ 9 / 43

  10. Anti-Unitary Equivalence of the Laplacians � ∂ ∗ � ϕ ∂ ϕ 0 D 2 = : H ϕ ⊕ H (1 , 0) → H ϕ ⊕ H (1 , 0) . ∂ ϕ ∂ ∗ 0 ϕ Lemma: Let k = e h/ 2 . We have k ¯ ∂ ∗ ϕ ∂ ϕ : H ϕ → H ϕ ∼ ∂∂k : H 0 → H 0 , ϕ : H (1 , 0) → H (1 , 0) ∂k 2 ∂ : H (1 , 0) → H (1 , 0) . ¯ ∂ ϕ ∂ ∗ ∼ 10 / 43

  11. Derivation of the Asymptotic Expansion Approximate e − tD 2 by pseudodifferential operators: e − tD 2 = 1 � e − tλ ( D 2 − λ ) − 1 dλ, 2 πi C B λ ( D 2 − λ ) ≈ 1 , σ ( B λ ) = b 0 + b 1 + b 2 + · · · . 11 / 43

  12. Connes’ pseudodifferential calculus (1980) • Symbols ρ : R 2 → A ∞ θ ⇒ P ρ : A ∞ θ → A ∞ θ � � R 2 e − is.ξ ρ ( ξ ) α s ( a ) ds dξ, P ρ ( a ) = (2 π ) − 2 a ∈ A ∞ θ . R 2 • Differential operators: � 1 ξ j � 1 δ j a ij ξ i a ij ∈ A ∞ a ij δ i ρ ( ξ 1 , ξ 2 ) = 2 , ⇒ P ρ = 2 . θ • Ψ DO’s on A ∞ θ form an algebra: 1 � ℓ 1 ! ℓ 2 ! ∂ ℓ 1 1 ∂ ℓ 2 2 ( ρ ( ξ )) δ ℓ 1 1 δ ℓ 2 2 ( ρ ′ ( ξ )) . σ ( P Q ) ∼ ℓ 1 ,ℓ 2 ≥ 0 12 / 43

  13. Symbol of the first Laplacian σ ( k ¯ ∂∂k ) = a 2 ( ξ ) + a 1 ( ξ ) + a 0 ( ξ ) , where 1 k 2 + | τ | 2 ξ 2 2 k 2 + 2 ℜ ( τ ) ξ 1 ξ 2 k 2 , a 2 ( ξ ) = ξ 2 a 1 ( ξ ) = 2 ξ 1 kδ 1 ( k )+2 | τ | 2 ξ 2 kδ 2 ( k )+2 ℜ ( τ ) ξ 1 kδ 2 ( k )+2 ℜ ( τ ) ξ 2 kδ 1 ( k ) , a 0 ( ξ ) = kδ 2 1 ( k ) + | τ | 2 kδ 2 2 ( k ) + 2 ℜ ( τ ) kδ 1 δ 2 ( k ) . 1 � ℓ 1 ! ℓ 2 ! ∂ ℓ 1 1 ∂ ℓ 2 2 ( b j ) δ ℓ 1 1 δ ℓ 2 b n = − 2 ( a k ) b 0 , n > 0 . 2+ j + ℓ 1 + ℓ 2 − k = n, 0 ≤ j<n, 0 ≤ k ≤ 2 1 k 2 + | τ | 2 ξ 2 2 k 2 + 2 ℜ ( τ ) ξ 1 ξ 2 k 2 − λ ) − 1 . b 0 = a ′− 1 = ( ξ 2 2 13 / 43

  14. Weyl’s law for T 2 θ Theorem. (Khalkhali-F.) Let N ( λ ) = # { λ j ≤ λ } be the eigenvalue counting function of D 2 . We have π ℑ ( τ ) ϕ 0 ( e − h ) λ N ( λ ) ∼ ( λ → ∞ ) . Equivalently: λ j ∼ ℑ ( τ ) π ϕ (1) j ( j → ∞ ) . 14 / 43

  15. Connes’ trace theorem for T 2 θ Classical symbols: ρ : R 2 → A ∞ θ ∞ � ρ ( ξ ) ∼ ρ m − i ( ξ ) ( ξ → ∞ ) , i = − 0 ρ m − i ( t ξ ) = t m − i ρ m − i ( ξ ) , ξ ∈ R 2 . t > 0 , Theorem. (Khalkhali-F.) For any classical symbol ρ of order − 2 on A θ , we have P ρ ∈ L 1 , ∞ ( H 0 ) , and Tr ω ( P ρ ) = 1 � � � S 1 ϕ 0 ρ − 2 ( ξ ) dξ. 2 15 / 43

  16. b 1 = − ( b 0 a 1 b 0 + ∂ 1 ( b 0 ) δ 1 ( a 2 ) b 0 + ∂ 2 ( b 0 ) δ 2 ( a 2 ) b 0 ) , b 2 = − ( b 0 a 0 b 0 + b 1 a 1 b 0 + ∂ 1 ( b 0 ) δ 1 ( a 1 ) b 0 + ∂ 2 ( b 0 ) δ 2 ( a 1 ) b 0 + ∂ 1 ( b 1 ) δ 1 ( a 2 ) b 0 + ∂ 2 ( b 1 ) δ 2 ( a 2 ) b 0 + (1 / 2) ∂ 11 ( b 0 ) δ 2 1 ( a 2 ) b 0 + (1 / 2) ∂ 22 ( b 0 ) δ 2 2 ( a 2 ) b 0 + ∂ 12 ( b 0 ) δ 12 ( a 2 ) b 0 ) . 16 / 43

  17. Connes’ Rearrangement Lemma For any m = ( m 0 , m 1 , . . . , m ℓ ) ∈ Z ℓ +1 > 0 and ρ 1 , . . . , ρ ℓ ∈ A ∞ θ � ∞ ℓ � ρ j ( e h u + 1) − m j du u | m |− 2 ( e h u + 1) − m 0 0 1 ℓ = e − ( | m |− 1) h F m (∆ , . . . , ∆) � � � ρ j , 1 where � ∞ ℓ j x | m |− 2 � − m j � � � F m ( u 1 , . . . , u ℓ ) = x u k + 1 dx. ( x + 1) m 0 0 1 1 17 / 43

  18. Conformal Geometry of T 2 θ with τ = i (Cohen-Connes) Let be the eigenvalues of ∂ ∗ λ 1 ≤ λ 2 ≤ λ 3 ≤ · · · ϕ ∂ ϕ , and � λ − s ζ ( s ) = j , ℜ ( s ) > 1 . Then ζ (0) + 1 = f (∆)( δ 1 ( e h/ 2 )) δ 1 ( e h/ 2 ) f (∆)( δ 2 ( e h/ 2 )) δ 2 ( e h/ 2 ) � � � � ϕ + ϕ , where f ( u ) = 1 6 u − 1 / 2 − 1 3 + L 1 ( u ) − 2(1+ u 1 / 2 ) L 2 ( u )+(1+ u 1 / 2 ) 2 L 3 ( u ) , m ( − 1) j +1 ( u − 1) j L m ( u ) = ( − 1) m ( u − 1) − ( m +1) � � � log u − . j j =1 18 / 43

  19. The Gauss-Bonnet theorem for T 2 θ Theorem. (Connes-Tretkoff; Khalkhali-F.) For any θ ∈ R , complex parameter τ ∈ C \ R and Weyl conformal factor e h , h = h ∗ ∈ A ∞ θ , we have ζ (0) + 1 = 0 . 19 / 43

  20. Final Part of the Proof ζ (0) + 1 = + 2 π | τ | 2 2 π K ( ∇ )( δ 1 ( h 2 )) δ 1 ( h K ( ∇ )( δ 2 ( h 2 )) δ 2 ( h � � � � ℑ ( τ ) ϕ 0 2 ) ℑ ( τ ) ϕ 0 2 ) +2 π ℜ ( τ ) K ( ∇ )( δ 1 ( h 2 )) δ 2 ( h +2 π ℜ ( τ ) K ( ∇ )( δ 2 ( h 2 )) δ 1 ( h � � � � ℑ ( τ ) ϕ 0 2 ) ℑ ( τ ) ϕ 0 2 ) , where � x � 3 x csch 2 � x � � �� � 3 x − 3 sinh − 3 sinh( x ) + sinh 2 2 2 K ( x ) = − 3 x 2 is an odd entire function, and ∇ = log ∆ . 20 / 43

  21. x 3 23 x 5 K ( x ) = − x � x 6 � 20 + 2240 − 806400 + O . 1.0 0.5 � 10 � 5 5 10 � 0.5 � 1.0 21 / 43

  22. Scalar Curvature for ( A ∞ θ , H , D ) It is the unique element R ∈ A ∞ θ such that a ∈ A ∞ ζ a (0) + ϕ 0 ( a ) = ϕ 0 ( a R ) , θ , where ζ a ( s ) := Trace ( a | D | − 2 s ) , Re ( s ) ≫ 0 . Equivalently, consider small-time heat kernel expansions: Trace ( a e − tD 2 ) ∼ � n − 2 B n ( a, D 2 ) t 2 , a ∈ A ∞ θ . n ≥ 0 22 / 43

  23. Final Formula for the Scalar Curvature of T 2 θ Theorem. (Connes-Moscovici; Khalkhali-F.) Up to an overall factor − π of ℑ ( τ ) , R is equal to 1 ( h 2 ) + 2 τ 1 δ 1 δ 2 ( h 2 ( h 2 ) + | τ | 2 δ 2 δ 2 � � R 1 ( ∇ ) 2 ) δ 1 ( h 2 ) 2 + | τ | 2 δ 2 ( h δ 1 ( h 2 ) , δ 2 ( h � 2 ) 2 + ℜ ( τ ) �� � + R 2 ( ∇ , ∇ ) 2 ) ℑ ( τ ) [ δ 1 ( h 2 ) , δ 2 ( h � � + i W ( ∇ , ∇ ) 2 )] . 23 / 43

  24. 1 2 − sinh( x/ 2) x R 1 ( x ) = sinh 2 ( x/ 4) . � 0.05 � 0.10 � 0.15 � 0.20 � 0.25 � 100 � 50 50 100 24 / 43

  25. R 2 ( s, t ) = − (1+cosh(( s + t ) / 2))( − t ( s + t ) cosh s + s ( s + t ) cosh t − ( s − t )( s + t +sinh s +sinh t − sinh( s + t ))) st ( s + t ) sinh( s/ 2) sinh( t/ 2) sinh 2 (( s + t ) / 2) 25 / 43

  26. W ( s, t ) = ( − s − t + t cosh s + s cosh t + sinh s + sinh t − sinh( s + t )) . st sinh( s/ 2) sinh( t/ 2) sinh(( s + t ) / 2) 26 / 43

  27. Symbol of the second Laplacian σ ( ∂ ∗ k 2 ∂ ) = c 2 ( ξ ) + c 1 ( ξ ) , where 1 k 2 + 2 τ 1 ξ 1 ξ 2 k 2 + | τ | 2 ξ 2 c 2 ( ξ ) = ξ 2 2 k 2 , c 1 ( ξ ) = ( δ 1 ( k 2 ) + τδ 2 ( k 2 )) ξ 1 + (¯ τδ 1 ( k 2 ) + | τ | 2 δ 2 ( k 2 )) ξ 2 . 27 / 43

  28. K 1 ( x ) = 2 e x/ 2 ( e x ( x − 2) + x + 2) ( e x − 1) 2 x 0.30 0.25 0.20 0.15 0.10 0.05 � 15 � 10 � 5 5 10 15 28 / 43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend