predicting network performance characteristics
play

Predicting Network Performance Characteristics - Introducing Flow - PowerPoint PPT Presentation

Predicting Network Performance Characteristics - Introducing Flow Field Forecasting - Michael Frey Kyle Caudle Bucknell University South Dakota School mfrey@bucknell.edu of Mines & Technology e-Weather Center Project DOE ASCR Program


  1. Predicting Network Performance Characteristics - Introducing Flow Field Forecasting - Michael Frey Kyle Caudle Bucknell University South Dakota School mfrey@bucknell.edu of Mines & Technology e-Weather Center Project DOE ASCR Program - Phil DeMar - Thomas Ndousse-Fetter - Brian Tierney Summer er 201 201 E ESCC/Inter ernet et2 J 2 Joint T Tec echs 1 . .

  2. Outline • The NPC forecasting problem • Standard forecasting tools • Flow field forecasting • Demonstrations • Present status Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 2 . . . .

  3. The problem Given: A sequence of observations of an NPC along a network path with given observation times NPC ?  ?  t 1 t 2 t 3 t 4 t 5 t 6 t 7 t N  1 t N t F t F Goal: Predict the NPC reliably at time F in the near future t Extrapolate plausibly at F t beyond the near future Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 3 . . . .

  4. Beyond near future Stable underlying mechanism Non-stable underlying mechanism Reliable prediction beyond near future Unreliable prediction beyond near future David Keeling CO2 Data - Mauna Loa, Hawaii Euro - US Dollar Exchange Rate 400 $1.60 Sole Atmospheric CO2 (ppm) 390 Measured monthly currency $1.50 of EU 380 $1.40 370 Euro price $1.30 360 350 $1.20 340 $1.10 330 $1.00 320 $0.90 310 Recorded daily, at close 1960 1970 1980 1990 2000 2010 $0.80 Year 1/1/01 1/1/03 1/1/05 1/1/07 1/1/09 1/1/11 Channel Untilization - Los Angeles/Houston Backbone Sunspot cycle 200 U.S. National Oceanic and Los Angeles Inbound (Gbits/sec) Atmospheric Administration 4 150 3 Count 100 2 50 1 rt r.losa.int ernet 2.edu--ge-6/ 1/ 0.0 BACKBONE: LOSA-HOUS 1 | 0 0 12-HOUS-LOSA-10GE-05581 noon 20:00 04:00 noon 20:00 04:00 noon 1700 1750 1800 1850 1900 1950 2000 Fri 24 Jun 2011 12:00:00 EDT - Sun 26 Jun 2011 12:00:00 EDT Year Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joi oint nt T Techs hs 4 . . . .

  5. Desiderata Error estimate – reliably estimates near-future prediction error Plausible – plausibly extrapolates beyond near future Robust – accepts non-uniformly spaced observation times Autonomous – no human guidance Fast – computationally efficient; e.g., no multi- dimensional numerical optimizations Accommodative – capable of exploiting “parallel” data Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 5 . . . .

  6. Available Tools Gaussian process regression Semiparametric regression Spectral/wavelet methods Traditional regression ARIMA forecasting Moving averages Neural networks ??? Error estimate X √ √ X √ √ X Plausible X X X X √ X √ Robust X √ X √ √ √ X Autonomous √ X X √ X √ √ Fast √ √ X X X √ √ Accommodative X √ X √ X X X Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 6 . . . .

  7. New Forecasting Method Gaussian process regression Semiparametric regression Spectral/wavelet methods Traditional regression Flow field forecasting ARIMA forecasting Moving averages Neural networks Error estimate X √ √ X √ √ X √ Plausible X X X X √ X √ √ Robust X √ X √ √ √ X √ Autonomous √ X X √ X √ √ √ Fast √ √ X X X √ √ √ Accommodative X √ X √ X X X √ Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 7 . . . .

  8. Flow Field Forecasting - 1 Step 1: Extract skeleton = + ε Data Y S n n n κ κ κ κ    0   1 2 3 K = Skeleton  s s s s s   0 1 2 3 K   δ δ δ δ δ    0 1 2 3 K = Noise • Semi-parametric regression • Use only skeleton for forecast • Data reduction        + Skeleton      • Original time spacing not             relevant   Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 8 . . . .

  9. Flow Field Forecasting - 2 Step 2: Interpolate flow field Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 9 .

  10. Flow Field Forecasting - 3 Step 3: Build to the future Skeleton  K  1  K  2  K  3   d 0 d 1 d 2 d K            s 0 s 1 s 2 s K s K  1 s K  2 s K  3     0  1  2  K  K  1  K  2  K  3     flowfield interpolation Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint T Techs 10 10 . . . .

  11. Demonstration 1 - Flow field contains much applicable information - Prediction error builds slowly Su Summer 201 ESC ESCC/Inter ernet et2 J 2 Joint Tec echs 11 11 . . . .

  12. Demonstration 2 - Flow field contains little applicable information - Prediction error builds quickly Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint Tec echs 12 . . . .

  13. Current Status • Python code undergoing final testing For a copy  mfrey@bucknell.edu • Integration with e-Weather Center can begin in September 2011 • “Introducing Flow Field Forecasting” by Frey and Caudle For a copy  mfrey@bucknell.edu Summer er 2 201 01 ESCC/Inter ernet et2 J 2 Joint Tec echs 13 . . . .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend