y system for the exact spectrum of n 4 sym
play

Y-system for the exact spectrum of N = 4 SYM Vladimir Kazakov - PowerPoint PPT Presentation

Universit t von Bonn, 6 Juni 2011 Y-system for the exact spectrum of N = 4 SYM Vladimir Kazakov (ENS,Paris) Theoretical Challenges in Quantum Gauge Field Theory QFTs in dimension>2, in particular 4D Yang-Mills gauge theories,


  1. Universit ȁ t von Bonn, 6 Juni 2011 Y-system for the exact spectrum of N = 4 SYM Vladimir Kazakov (ENS,Paris)

  2. Theoretical Challenges in Quantum Gauge Field Theory • QFT’s in dimension>2, in particular 4D Yang-Mills gauge theories, describe fundamental structures of the Nature but are very difficult to handle • Quantum Chromodynamics, or even pure Yang-Mills theories can be treated so far only perturbatively (weak coupling, high energies) or by computer Monte-Carlo simulations on the lattice (bad accuracy, no understanding, problems with super-YM theories) . • We need a theoretical progress and some exact non-perturbative results • Guiding ideas: special gauge theories (N=4 SYM theory!), special limits, AdS/CFT correspondence and integrablility

  3. Integrability in AdS/CFT • Integrable planar superconformal 4D N=4 SYM and 3D N=8 Chern-Simons... (non-BPS, summing genuine 4D Feynman diagrams!) Based on AdS/CFT duality to very special 2D superstring ϭ -models on AdS- • background • Most of 2D integrability tools applicable: S-matrix, TBA for finite volume spectrum, etc. .... Y-system (for planar AdS 5 /CFT 4 , AdS 4 /CFT 3 ,...) • Conjecture: it calculates exact anomalous dimensions of all local operators of the gauge theory at any coupling Gromov,V.K.,Vieira Further simplification: Y-system as Hirota discrete integrable dynamics •

  4. CFT: N=4 SYM as a superconformal 4D QFT • 4D superconformal QFT! Global symmetry PSU(2,2|4) • Operators in 4D • 4D Correlators: scaling dimensions non-trivial functions of ‘tHooft coupling λ ! structure constants They describe the whole conformal theory via operator product expansion

  5. Anomalous dimensions in various limits 1,2,3…-loops: integrable • Perturbation theory: spin chain Minahan,Zarembo Beisert,Kristijanssen,Staudacher • BFKL approx. for twist-2 operators Kotikov, Lipatov • String (quasi)-classics: Finite gap method, Bohr-Sommerfeld Frolov,Tseytlin, V.K.,Marshakov,Minahan,Zarembo Beisert,V.K.,Sakai,Zarembo Roiban,Tseytlin, Gromov,Vieira • Long operators, no wrappings: Asymptotic Bethe Ansatz (ABA) Beisert,Staudacher Beisert,Eden,Staudacher • Strong coupling, short operators: Worldsheet perturbation theory Gubser,Klebanov,Polyakov • Exact dimensions (all wrappings): Y-system and TBA Gromov,V.K.,Vieira Bombardelli,Fioravanti,Tateo Gromov,V.K.,Kozak,Vieira Gromov,V.K.,Vieira Arutyunov,Frolov

  6. Weak coupling calculation from SYM Δ 0 = L - degeneracy (for scalars) • Tree level: • 1-loop nontrivial action • 2-loop: on R-indices.

  7. Perturbative integrability  Interaction: • “Vacuum” – BPS operator • Example: SU(2) sector • Dilatation operator = Heisenberg Hamiltonian, integrable by Bethe ansatz! Minahan,Zarembo Beisert,Kristijanssen,Staudacher

  8. Exact spectrum at one loop • Dilatation operator = Heisenberg Hamiltonian, integrable by Bethe ansatz! - vacuum Minahan, Zarembo Beisert, Kristijansen,Staudacher Rapidity parameterization: Bethe’31 Anomalous dimension:

  9. SYM perturbation and (1+1)D S-matrix Minahan, Zarembo Krisijansen,Beisert,Staudacher Staudacher  Feynman graphs and asymptotic scattering of “defects” on 1D “spin chain” On the string side... p 2 p 1 • Light cone gauge breaks the global and world-sheet Lorentz symmetries : psu(2,2|4) Beisert Janik su(2|2) su(2|2) Shastry’s R-matrix • S-matrix of AdS/CFT via bootstrap à-la A.&Al.Zamolodchikov o f Hubbard model

  10. Asymptotic Bethe Ansatz (ABA) Beisert,Eden,Staudacher p j p 1 p M • This periodicity condition is diagonalized by nested Bethe ansatz • Energy of state finite size corrections, important for short operators! • Results: ABA for dimensions of long YM operators (e.g., cusp dimension).

  11. Finite size (wrapping) effects  Wrapped graphs : beyond S-matrix theory  We need to take into account finite size effects - Y-system needed

  12. TBA for finite size (Al.Zamolodchikov trick) Gromov,V.K.,Vieira Bombardelli,Fioravanti,Tateo Gromov,V.K.,Kozak,Vieira Arutyunov,Frolov ϭ -model in cross channel on large circle R world sheet ϭ -model in physical channel on small space circle L • Large R : cross channel momenta localize on poles of S-matrix → bound states

  13. Bound states and TBA in AdS/CFT  “Strings” of Bethe roots labeled by su(2,2|4) Dynkin nodes: Gromov,V.K.,Vieira Bombardelli,Fioravanti,Tateo Gromov,V.K.,Kozak,Vieira Arutyunov,Frolov complex -plane Roots form bound states Takahashi bound states for Hubbard model densities of bound states • TBA equations from minimum of free energy at finite temperature T=1/L • Inverting the kernels, TBA can be brought to universal Y-system! • Bound states organized in T-hook

  14. Dispersion relation Santambrogio,Zanon • Exact one particle dispersion relation at infinite volume Beisert,Dippel,Staudacher N.Dorey • Bound states (fusion) • Parametrization for dispersion relation: via Zhukovsky map: cuts in complex u -plane

  15. Y-system for excited states of AdS/CFT at finite size Gromov,V.K.,Vieira T-hook • Complicated analyticity structure in u dictated by non-relativistic dispersion cuts in complex -plane • Extra equation (remnant of classical Z 4 monodromy): • Energy : (anomalous dimension) • obey the exact Bethe eq. :

  16. Konishi operator : numerics from Y-system Beisert, Eden,Staudacher Gubser,Klebanov,Polyakov ABA Gubser =2! From Klebanov Polyakov quasiclassics Y-system numerics Gromov,Shenderovich, Gromov,V.K.,Vieira Serban, Volin Roiban,Tseytlin Masuccato,Valilio 5 loops and BFKL from string Fiamberti,Santambrogio,Sieg,Zanon Velizhanin Bajnok,Janik Gromov,V.K.,Vieira Bajnok,Janik,Lukowski Lukowski,Rej,Velizhanin,Orlova millions of 4D Feynman graphs!  Y-system passes all known tests

  17. Two loops from string quasiclassics for operators Gromov,Shenderovich, Serban, Volin • Perfectly reproduces two terms of Y-system numerics Roiban,Tseytlin for Konishi operator Masuccato,Valilio • Also works for

  18. Y-system looks very “simple” and universal! • Similar systems of equations in all known integrable σ -models • What are its origins? Could we guess it without TBA?

  19. Y-systems for other σ -models 3d ABJM model: CP 3 x AdS 4 , … Gromov,V.K.,Vieira Bombardelli,Fiorvanti,Tateo Gromov,Levkovich-Maslyuk

  20. Y-system and Hirota eq.: discrete integrable dynamics • Relation of Y-system to T-system (Hirota equation) (the Master Equation of Integrability!) Hirota eq. in T-hook for AdS/CFT Gromov, V.K., Vieira Discrete classical integrable dynamics!

  21. (Super-)group theoretical origins  A curious property of gl(N) representations with rectangular Young tableaux: a-1 = + a a-1 s s s-1 s+1  For characters – simplified Hirota eq.:  Boundary conditions for Hirota eq.: gl(K|M) representations in “fat hook”: a λ a (a,s) fat hook (K,M) λ 2 λ 1 s • Solution: Jacobi-Trudi formula for GL(K|M) characters

  22. Super-characters: Fat Hook of U(4|4) and T-hook of U(2,2|4)  Generating function for symmetric representations: U(2,2|4) U(4|4) a a s s ∞ - dim. unitary highest weight representations of u(2,2|4) ! Kwon Cheng,Lam,Zhang Gromov, V.K., Tsuboi

  23. Character solution of T-hook for u(2,2|4) Gromov,V.K.,Tsuboi • Solution in finite 2 × 2 and 4 × 4 determinants (analogue of the 1-st Weyl formula)  Generalization to full T-system with spectral parameter: Hegedus Gromov,Tsuboi,V.K Wronskian determinant solution.  Should help to reduce AdS/CFT system to a finite system of equations.

  24. Quasiclassical solution of AdS/CFT Y-system  Classical limit: highly excited long strings/operators, strong coupling:  Explicit u-shift in Hirota eq. dropped (only slow parametric dependence) Gromov,V.K.,Tsuboi  (Quasi)classical solution - psu(2,2|4) character of classical monodromy matrix in Metsaev-Tseytlin superstring sigma-model Zakharov,Mikhailov Bena,Roiban,Polchinski world sheet  Its eigenvalues (quasi-momenta) encode conservation lows  Finite gap method renders all classical solutions! V.K.,Marshakov,Minahan,Zarembo Beisert,V.K.,Sakai,Zarembo

  25. Finite gap solution for dual classical superstring V.K.,Marshakov,Minahan,Zarembo  2D ϭ -model on a Beisert,V.K.,Sakai,Zarembo coset  String equations of motion and constraints can be recasted into zero curvature condition Zakharov,Mikhailov world sheet Bena,Roiban,Polchinski  Monodromy matrix encodes infinitely many conservation lows  Eigenvalues – conserved quantities  Algebraic curve for quasi-momenta:  Dimension of YM operator Energy of a string state

  26. From classical to quantum Hirota in U(2,2|4) T-hook Gromov ov, V , V.K., , Tsuboi oi Gromov ov, V , V.K., , Leuren ent,Tsuboi boi • Quantization: replace classical spectral function by a spectral functional • More explicitly: - expansion in • The solution for any T-function is then given in terms of 7 independent functions by For spin chains : Bazhanov,Reshetikhin Cherednik V.K.,Vieira (for the proof) • Using analyticity in u one can transform Y-system to a Cauchi-Riemann problem for 7 functions! Gromov ov, , V.K.,Le Leur uren ent,Volin (in p progr ogres ess)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend