universal range effects to efimov features
play

Universal Range Effects to Efimov Features Chen Ji ECT* / - PowerPoint PPT Presentation

Universal Range Effects to Efimov Features Chen Ji ECT* / INFN-TIFPA EMMI RRTF, 02.06.2016 In Collaboration with: Bijaya Acharya, Eric Braaten, Lucas Platter, Daniel Phillips EFT for 3 identical bosons LO ( r/a ) 0 EFT Lagrangian for 3


  1. Universal Range Effects to Efimov Features Chen Ji ECT* / INFN-TIFPA EMMI RRTF, 02.06.2016 In Collaboration with: Bijaya Acharya, Eric Braaten, Lucas Platter, Daniel Phillips

  2. EFT for 3 identical bosons LO ( r/a ) 0 EFT Lagrangian for 3 identical bosons � � � � i∂ 0 + ∇ 2 i∂ 0 + ∇ 2 � � d − g L = ψ † ψ − d † d † ψψ + h.c + hd † dψ † ψ + · · · 4 m − ∆ √ 2 m 2 terms with more derivatives are at higher orders ( r/a ) n Non-perturbative features at LO atom-atom (dimer) scattering (tune g ) 1 ∝ = + 1 /a + ik atom-dimer scattering (tune h ) t 0 = + + t 0 + t 0 Bedaque, Hammer, van Kolck ’99

  3. LO renormalization LO 3BF h : tune H (Λ) = Λ 2 h/ 2 mg 2 : fix one 3-body observable limit cycle: H (Λ) periodic for Λ → Λ(22 . 7) n Bedaque et al. ’00 scaling invariance → Efimov physics Efimov ’71

  4. Universal physics at LO Universal features in three-body systems (Efimov effects) 3-body spectrum: a function of scattering length a geometric spectrum E n = (22 . 7) − 2 E n − 1 in the limit a → ∞ universal relation of recombination features a ∗ = a + / 4 . 5 = − a − / 21 . 3 i.e. a − ( n ) = 22 . 7 a − ( n − 1) Zaccanti et al. ’09

  5. Range effects in EFT range effects on universal physics 2 k 2 + · · · 2-body observable: k cot δ 0 = − 1 a + r 3-body observables: → in r/a expansion r/a corrections (fixed a ): Hammer, Mehen ’01 (NLO) Bedaque, Rupak, Griesshammer, Hammer ’03 (N 2 LO, partial resummation) Platter, Phillips ’06 (N 2 LO, partial resummation) CJ, Phillips ’13 (N 2 LO, full perturbation) r/a corrections (variable a ): Platter, CJ, Phillips ’09 (NLO, partial resummation) CJ, Platter, Phillips ’10; ’12 (NLO, full perturbation)

  6. N 2 LO ( r /a ) 2 range effects (fixed a ) N 2 LO corrections to atom-dimer scattering amplitude: in 2 nd order perturbation theory ( ∼ r 2 /a 2 ): N 2 LO dimer: t 0 t 0 N 2 LO 3BF: t 0 t 0 t 0 t 0 + · · · two NLO t 0 t 0 t 0 t 0 t 0 t 0 terms: + · · · t 0 t 0 t 0 N 2 LO 3-body force: H 2 ( E, Λ) = r 2 Λ 2 h 20 (Λ) + r 2 mE 3 h 22 (Λ) → one additional 3-body input is needed CJ, Phillips FBS ’13 c.f. Bedaque et al. ’03 & Platter, Phillips ’06

  7. N 2 LO Renormalization in Helium Trimers H 2 = r 2 Λ 2 h 20 + r 2 mE t h 22 H 2 = r 2 Λ 2 h 20 100 1.5 (0) B 0 1 0 (0) B 1 (1) [ γ n B d ] (0) [ γ n B d ] (0) 0.1 B 2 0.5 -100 B n 0 B n (1) B 0 (1) B 1 -0.5 (1) -200 B 2 -1 2 3 4 5 2 3 4 5 10 10 10 10 10 10 10 10 Λ [γ] Λ [γ] a ad → LO/NLO/N 2 LO a ad → LO/NLO/N 2 LO B (1) → N 2 LO B (1) = B (1) + rB (1) + r 2 B (1) t t 0 1 2 B (0) = B (0) + rB (0) + r 2 B (0) t 0 1 2

  8. N 2 LO three-body 3BF H 2 (Λ) = r 2 Λ 2 h 20 (Λ) + r 2 mE t h 22 (Λ) 40 0.8 20 0.6 1 / h 20 ( Λ) 1 / h 22 ( Λ) 0 0.4 -20 0.2 -40 0 1 2 3 4 5 1 2 3 4 5 10 10 10 10 10 10 10 10 10 10 Λ [γ] Λ [γ] 1 /h 22 (Λ) [partial version] 1 /h 20 (Λ)

  9. 4 He trimer B (1) B (0) a ad [ γ − 1 ] r ad [ γ − 1 ] Input [ B d ] [ B d ] t t TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad , B (1) N 2 LO 1.738 116.9 1.205 0.9132 t B (1) LO 1.738 99.37 1.178 0.8752 t B (1) NLO 1.738 89.77 1.201 0.9130 t B (1) N 2 LO , a ad 1.738 115.9 1.205 0.9135 t CJ, Phillips FBS ’13

  10. 4 He trimer B (1) B (0) a ad [ γ − 1 ] r ad [ γ − 1 ] Input [ B d ] [ B d ] t t TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad , B (1) N 2 LO 1.738 116.9 1.205 0.9132 t B (1) LO 1.738 99.37 1.178 0.8752 t B (1) NLO 1.738 89.77 1.201 0.9130 t B (1) N 2 LO , a ad 1.738 115.9 1.205 0.9135 t CJ, Phillips FBS ’13

  11. 4 He trimer B (1) B (0) a ad [ γ − 1 ] r ad [ γ − 1 ] Input [ B d ] [ B d ] t t TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad , B (1) N 2 LO 1.738 116.9 1.205 0.9132 t B (1) LO 1.738 99.37 1.178 0.8752 t B (1) NLO 1.738 89.77 1.201 0.9130 t B (1) N 2 LO , a ad 1.738 115.9 1.205 0.9135 t CJ, Phillips FBS ’13

  12. 4 He trimer B (1) B (0) a ad [ γ − 1 ] r ad [ γ − 1 ] Input [ B d ] [ B d ] t t TTY potential 1.738 96.33 1.205 a ad LO 1.723 97.12 1.205 0.8352 a ad NLO 1.736 89.72 1.205 0.9049 a ad , B (1) N 2 LO 1.738 116.9 1.205 0.9132 t B (1) LO 1.738 99.37 1.178 0.8752 t B (1) NLO 1.738 89.77 1.201 0.9130 t B (1) N 2 LO , a ad 1.738 115.9 1.205 0.9135 t Difference in 2 renormalization schemes (LO → NLO → N 2 LO): atom-dimer effective range r ad : 5% → 0.9% → 0.02% ground-state trimer B (0) : 2% → 0.07% → 0.9% t CJ, Phillips FBS ’13

  13. NLO ( r/a ) range effects Calculate r/a correction to atom-dimer amplitude NLO dimer: t 0 t 0 t 0 t 0 t 0 t 0 NLO 3BF: NLO 3-body force: H 1 (Λ) = r Λ h 10 (Λ) + r/a h 11 (Λ) a fixed: h 11 is absorbed (no additional 3-body input is needed) a varies: one additional 3-body input is needed

  14. NLO three-body 3BF H 1 (Λ) = r Λ h 10 (Λ) + r/a h 11 (Λ) 0 0 -0.5 -0.1 1 / h 10 ( Λ) -1 1 / h 11 ( Λ) -0.2 -1.5 -0.3 -0.4 -2 -0.5 -2.5 1 2 3 4 5 6 1 2 3 4 5 6 10 10 10 10 10 10 10 10 10 10 10 10 Λ / κ * Λ / κ * 1 /h 10 (Λ) 1 /h 11 (Λ)

  15. Recombination of 7 Li Atoms NLO ⋆ Experiment †‡ LO LO -264 † 3A res a − , 0 [ a B ] -264 -244 -264 1160 † rec min a + , 1 [ a B ] 1254 1160 1160 180 ‡ Ad res a ∗ , 1 [ a B ] 281 259 210(44) † Gross et al. ’09 ‡ Machtey et al. ’12 ⋆ Ji, Phillips, Platter ’10

  16. Universal Relations at NLO recombination features are correlated by a i,n = λ n θ i κ − 1 + ( J i + n σ ) r ; i = ∗ , + , − ; λ = 22 . 694 ∗ J i is non-universal but J i − J j is a universal number e.g. J + − J − = σ/ 2 , σ = 1 . 095 κ ∗ r and J i can be fixed by the ratio of two Efimov features e.g. fix ( a − , 1 /a − , 0 ) /λ , ( a − , 2 /a − , 1 ) /λ deviate from 1 due to range effects predict ratios of any other features ( a i,n +1 /a i,n ) /λ CJ, Braaten, Phillips, Platter, PRA 2015

  17. Three-Body Force (3BF) at NLO LO 3BF: RG limit cycle → discrete scaling symmetry λ n NLO 3BF: RG range-modification → discrete scaling breaking nσ 3BF up to NLO can be divided into 4 different contributions � r � � + ˜ η H ′ H (Λ) = H 0 (Λ / Λ ∗ ) � + h 10 (Λ / Λ ∗ )Λ r � + 0 (Λ / Λ ∗ ) ln(Λ /µ ) h 11 (Λ / Λ ∗ ) a � �� � �� � �� � �� � log periodic linear divergence log divergence log periodic with H ′ 0 = (Λ d/d Λ) H 0

  18. Three-Body Force (3BF) at NLO LO 3BF: RG limit cycle → discrete scaling symmetry λ n NLO 3BF: RG range-modification → discrete scaling breaking nσ 3BF up to NLO can be divided into 4 different contributions � r � � + ˜ η H ′ H (Λ) = H 0 (Λ / Λ ∗ ) � + h 10 (Λ / Λ ∗ )Λ r � + 0 (Λ / Λ ∗ ) ln(Λ /µ ) h 11 (Λ / Λ ∗ ) a � �� � �� � �� � �� � log periodic linear divergence log divergence log periodic with H ′ 0 = (Λ d/d Λ) H 0

  19. Three-Body Force (3BF) at NLO LO 3BF: RG limit cycle → discrete scaling symmetry λ n NLO 3BF: RG range-modification → discrete scaling breaking nσ 3BF up to NLO can be divided into 4 different contributions � r � � + ˜ η H ′ H (Λ) = H 0 (Λ / Λ ∗ ) � + h 10 (Λ / Λ ∗ )Λ r � + 0 (Λ / Λ ∗ ) ln(Λ /µ ) h 11 (Λ / Λ ∗ ) a � �� � �� � �� � �� � log periodic linear divergence log divergence log periodic with H ′ 0 = (Λ d/d Λ) H 0 Rewrite 3BF H 0 [ln(Λ / Λ ∗ )] + r aη H ′ H (Λ) = 0 [ln(Λ / Λ ∗ )] ln(Λ / Λ ∗ ) = H 0 [(1 + ηr/a ) ln(Λ / Λ ∗ )] � ln(Λ / Λ ∗ ) 1+ ηr/a � = H 0

  20. Three-Body Force (3BF) at NLO LO 3BF: RG limit cycle → discrete scaling symmetry λ n NLO 3BF: RG range-modification → discrete scaling breaking nσ 3BF up to NLO can be divided into 4 different contributions � r � � + ˜ η H ′ H (Λ) = H 0 (Λ / Λ ∗ ) � + h 10 (Λ / Λ ∗ )Λ r � + 0 (Λ / Λ ∗ ) ln(Λ /µ ) h 11 (Λ / Λ ∗ ) a � �� � �� � �� � �� � log periodic linear divergence log divergence log periodic with H ′ 0 = (Λ d/d Λ) H 0 Rewrite 3BF H 0 [ln(Λ / Λ ∗ )] + r aη H ′ H (Λ) = 0 [ln(Λ / Λ ∗ )] ln(Λ / Λ ∗ ) = H 0 [(1 + ηr/a ) ln(Λ / Λ ∗ )] � ln(Λ / Λ ∗ ) 1+ ηr/a � = H 0 Running 3B parameter at NLO: κ ∗ ( Q, a ) = ( Q/κ ∗ ) − ηr/a κ ∗

  21. RG Improvement insert running parameter into LO universal relation leads to Renormalization-Group Improved universal relations a i,n = λ n θ i ( λ n | θ i | ) ηrκ ∗ / ( λ n θ i ) κ − 1 + ˜ J i r ∗

  22. RG Improvement insert running parameter into LO universal relation leads to Renormalization-Group Improved universal relations a i,n = λ n θ i ( λ n | θ i | ) ηrκ ∗ / ( λ n θ i ) κ − 1 + ˜ J i r ∗ expand a i,n up to linear-in- r correction a i,n = λ n θ i κ − 1 c.f. + ( J i + n σ ) r ∗ requires σ = ηπ/s 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend