two dependence measures for multivariate extreme value
play

TWO DEPENDENCE MEASURES FOR MULTIVARIATE EXTREME VALUE - PDF document

TWO DEPENDENCE MEASURES FOR MULTIVARIATE EXTREME VALUE DISTRIBUTIONS WEISSMAN, ISHAY Technion - Israel Institute of Technology, Israel ieriw01@ie.technion.ac.il 1 Outline: - Introduction - Dependence measures 1 , 2 - Examples -


  1. TWO DEPENDENCE MEASURES FOR MULTIVARIATE EXTREME VALUE DISTRIBUTIONS WEISSMAN, ISHAY Technion - Israel Institute of Technology, Israel ieriw01@ie.technion.ac.il 1

  2. Outline: - Introduction - Dependence measures τ 1 , τ 2 - Examples - Relations between τ 1 , τ 2 - Combining two models - Conclusions 2

  3. 1. Introduction x ∈ R d , X = ( X 1 , X 2 , · · · , X d ) ∼ G ( x ) , where G is a multivariate extreme value distribution function. WOLOG with Fr´ echet margins: for all j G j ( x ) = exp {− 1 /x } ( x > 0) and exponent function λ ( x ) = − log G ( x ) , G t ( t x ) = G ( x ) tλ ( t x ) = λ ( x ) , ( t > 0) . ⇒ Since for MEVD d � 1 ≤ j ≤ d G j ( x j ) ≥ G ( x ) ≥ min G j ( x j ) , j =1 in our case � 1 max 1 ≤ λ ( x ) ≤ . x j x j (complete dependence) (total independence) 3

  4. The homogeneity of λ implies that λ ( tx ) / Σ( tx j ) − 1 does not depend on t. Define the (generalized) Pickands dependence function A ( v ) = λ ( v − 1 1 , v − 1 2 , · · · , v − 1 ) v ∈ Ω , d where Ω = { v : v j ≥ 0 , Σ v j = 1 } is the unit-simplex. It follows that 1 d ≤ A 0 ( v ) =: max v j ≤ A ( v ) ≤ 1 , λ ( x ) = A ( v )Σ x − 1 , j where v j = x − 1 / Σ x − 1 . j i � 1 d, · · · , 1 � η = A d has an interesting interpretation: � � P 1 ≤ j ≤ d X j ≤ z max = exp {− λ ( z, z, · · · , z ) } = exp {− dη/z } = { exp {− 1 /z }} dη . 4

  5. Hence, θ = dη is the extremal coefficient of ( X 1 , X 2 , · · · , X d ) . θ = 1 ⇔ complete dependence θ = d ⇔ total independence Schlather and Tawn (2002) analyse θ B = | B | η B for all 2 d possible subsets B of { 1 , 2 , · · · , d } . From de Haan and Resnick (1977) and Pickands (1981) � A ( v ) = Ω max v j a j U ( d a ) for a finite positive measure U , � U (Ω) = d and Ω a j U ( d a ) = 1 for all j. The function A is convex because for 0 ≤ α ≤ 1, max { ( αv j + (1 − α ) w j ) a j } ≤ α max v j a j + (1 − α ) max w j a j . 5

  6. 1.0 0.9 0.8 A(v) 0.7 0.6 0.5 0.0 0.2 0.4 0.6 0.8 1.0 v Pickands dependence function for the Logistic Model A ( v ) = ( v 1 /α + (1 − v ) 1 /α ) α with α = 0 , . 25 , . 50 , . 75 , 1 . 2. Measures of Dependence : Rescaling η , a natural measure of dependence is � 1 d , · · · , 1 � 1 − A d τ 1 = � � 1 d , · · · , 1 �� max A 1 − A d 6

  7. = d − θ d d − 1 = d − 1(1 − η ) An alternative measure is � Ω (1 − A ( v )) d v τ 2 = max A � Ω (1 − A ( v )) d v � Ω (1 − A 0 ( v )) d v =: S d ( A ) Ω (1 − A ( v )) d v = S d ( A 0 ) . � Which one is preferred? Similar question: mode vs. mean. Expect from dependence measure that for A = αA 0 + (1 − α ) · 1 ⇒ τ = α. Indeed, for this mixture model τ 1 = τ 2 = α. 7

  8. To compute τ 2 we need a formula for S A 0 , the volume above A 0 : d S A 0 2 1 / 4 = . 2500 3 7 / 36 = . 19444 4 . 07986 5 . 02264 Until very recently the challenge was to find a formula for S d ( A 0 ) . My colleague Shmuel Onn derived and proved ( d − 1)! − B d 1 S d ( A 0 ) = d ! where 1 + 1 2 + 1 3 + · · · + 1 � � B d = d is the harmonic sum. 8

  9. Other (bivariate) measures of dependence: In the literature (Beirlant et al, 2004) we encounter τ K = Kendall’s tau = 4 EC ( G 1 ( X 1 ) , G 2 ( X 2 )) − 1 , ρ S = Spearman’s rho = corr ( G 1 ( X 1 ) , G 2 ( X 2 )) , ρ = corr (log G 1 ( X 1 ) , log G 2 ( X 2 )) . Tawn (1988) mentioned τ 1 for d = 2. I have not seen τ 2 . These are all marginal-free and for mixture distributions (not mixture exponents): � � ( U, V ) w.p. 1 − α ( X 1 , X 2 ) = ( U, U ) w.p. α U, V independent, τ K = ρ S = ρ = α. 9

  10. 3. Examples. Let V 1 , V 2 , · · · be i.i.d. unit-Fr´ echet. Mixture model : For 0 ≤ α ≤ 1 λ ( x, y ) = α max( x − 1 , y − 1 ) + (1 − α )( x − 1 + y − 1 ) . That is X = max( αV 1 , (1 − α ) V 2 ) Y = max( αV 1 , (1 − α ) V 3 ) . A ( v ) = α max( v, 1 − v ) + (1 − α ) · 1 ( v ∈ [0 , 1]) . τ 1 = τ 2 = α. α 3 α τ K = ρ = 2 − α ≤ ρ S = 4 − α ≤ α. α = τ 1 = τ 2 τ K = ρ ρ S 0 0 0 1 / 4 1 / 5 1 / 7 1 / 2 3 / 7 1 / 3 3 / 4 9 / 13 3 / 5 1 1 1 10

  11. Mixed model : λ ( x, y ) = 1 x + 1 α y − x + y A ( v ) = 1 − α (1 − v ) v τ 1 = α τ 2 = 2 2 , 3 α τ K = 8 tan − 1 ( α/ (4 − α )) 1 / 2 − 2 α 1 / 2 (4 − α ) 1 / 2 ρ = 8 tan − 1 ( α/ (4 − α )) 1 / 2 − 2 − α α 1 / 2 (4 − α ) 3 / 2 4 − α 8 tan − 1 ( α/ (8 − α )) 1 / 2 � � 1 ρ S = 12 + − 3 α 1 / 2 (8 − α ) 3 / 2 8 − α α τ K ρ τ 1 ρ S τ 2 0 0 0 0 0 0 . 25 . 0877 . 0901 . 1250 . 1299 . 1667 . 50 . 1853 . 1958 . 2500 . 2702 . 3333 . 75 . 2947 . 3215 . 3750 . 4222 . 5000 1 . 4184 . 4728 . 5000 . 5874 . 6667 11

  12. de Haan - Resnick model : λ ( x, y, z ) = 1 2 { max( x − 1 , y − 1 ) + max( x − 1 , z − 1 ) + max( y − 1 , z − 1 ) } X 1 = max( V 1 , V 2 ) / 2 X 2 = max( V 1 , V 3 ) / 2 X 3 = max( V 2 , V 3 ) / 2 A ( v ) = 1 2 { max( v 1 , v 2 ) + max( v 1 , v 3 ) + max( v 2 , v 3 ) } η = A (1 / 3 , 1 / 3 , 1 / 3) = 1 / 2 , τ 1 = (3 / 2)(1 − η ) = 3 / 4 τ 2 = 36 7 · 1 8 = 9 14 = . 642857 τ 1 (1 , 2) = τ 2 (1 , 2) = 1 / 2 (Introducing X 3 to the system increases the dependence) 12

  13. Non-symmetric model : X 1 = max( V 1 / 2 , V 2 / 4 , V 3 / 4) X 2 = max(2 V 1 / 3 , V 2 / 3) X 3 = V 3 A ( v ) = max( . 75 v 1 , v 2 ) + max( . 25 v 1 , v 3 ) ( v 1 + v 2 + v 3 = 1) η = 2 / 3 , τ 1 = 1 / 2 , τ 2 = (36 / 7) . 104762 = . 53876 τ 1 (1 , 2) = 3 / 4 = . 75 τ 2 (1 , 2) = 6 / 7 = . 85714 τ 1 (1 , 3) = 1 / 4 = . 25 τ 2 (1 , 3) = 4 / 10 = . 4 13

  14. 4. Relations between τ 1 and τ 2 . Theorem. For d = 2, τ 1 ≤ τ 2 . 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Proof. Denote 1 − h = A (1 / 2 , 1 / 2)) , ⇒ τ 1 = 2 h. Define the mixture model (green graph) A ∗ ( v ) = τ 1 A 0 ( v ) + 1 − τ 1 , 14

  15. τ ∗ 1 = τ 1 = τ ∗ ⇒ 2 . Since A is convex, A ≤ A ∗ (= at (1 / 2 , 1 / 2)), � � � Ω (1 − A ∗ ) = τ 1 Ω (1 − A ) ≥ Ω (1 − A 0 ) � Ω (1 − A ) τ 2 = Ω (1 − A 0 ) ≥ τ 1 . � This is a perfect proof for d = 2. For d ≥ 3, the picture is misleading, namely, A ≤ A ∗ is not necessarily true. Here is a counter example: de Haan-Resnick model. For v 1 ≥ v 2 ≥ v 3 , v 1 + v 2 + v 3 = 1 , 2 , A ∗ ( v ) = 3 4 v 1 + 1 A ( v ) = v 1 + v 2 4 . Since v 2 ≥ v 3 ⇔ v 2 ≥ (1 − v 1 ) / 2 , 15

  16. A ( v ) − A ∗ ( v ) = 1 4 v 1 + 1 2 v 2 − 1 4 ≥ 0 , with equality when v 1 ≥ 1 / 3 , v 2 = v 3 = (1 − v 1 ) / 2 . For the logistic model A ( v ) = ( v 1 /α + v 1 /α + v 1 /α ) α , 1 2 3 A (1 / 3 , 1 / 3 , 1 / 3) = 3 α − 1 . τ 1 = (3 − 3 α ) / 2 α τ 2 = � Ω (1 − A )36 / 7 0 1 1 1 / 4 . 8420 . 9457 1 / 2 . 6340 . 7670 3 / 4 . 3602 . 4559 1 0 0 16

  17. For d = 2, how big can the difference τ 2 − τ 1 be? 1.0 0.9 0.8 −− − 1−h 0.7 0.6 0.5 0.0 0.2 0.4 0.6 0.8 1.0 Consider all (symmetric, d = 2) models for which A (1 / 2) = 1 − h so that τ 1 = 2 h . 17

  18. All the A functions must be bounded between the green graph and the red one. The green graph corresponds to a mixture model with α = 2 h = τ 1 = τ 2 : X 1 = max(2 hV 1 , (1 − 2 h ) V 2 ) X 2 = max(2 hV 1 , (1 − 2 h ) V 3 ) . The red A corresponds to ”cross over” model: X 1 = max( hV 1 , (1 − h ) V 2 ) X 2 = max((1 − h ) V 1 , hV 2 ) for which τ 2 = 4 h (1 − h ) = 1 − (1 − τ 1 ) 2 . τ 1 = 2 h, ( τ 2 − τ 1 ) = 1 max 4 h occurs at h = 1 / 4 , τ 1 = 1 / 2 , τ 2 = 3 / 4 . 18

  19. To be fair, one could hold the area (volume) constant (i.e. τ 2 ) and let τ 1 vary. For instance, all triangles with height h have τ 2 = 2 h, (0 ≤ h ≤ 1 / 2) but h 1 − h ≤ τ 1 ≤ 2 h = τ 2 . h = 1 / 4 , 1 / 3 ≤ τ 1 ≤ 1 / 2 = τ 2 . 19

  20. Combining two models. X = ( X 1 , · · · , X k ) , Y = ( Y 1 , · · · , Y m ) are combined into Z = ( X 1 , · · · , X k , Y 1 , · · · , Y m ) , k + m = d. To study the dependence measures of Z we must know the dependence between X and Y . If they are independent we can compute τ 1 and τ 2 : A ( v ) = tA 1 ( u ) + (1 − t ) A 2 ( w ) ( v ∈ Ω d ) , t = v 1 + · · · + v k , u ∈ Ω k , w ∈ Ω m , u i = v i v k + i t , 1 ≤ i ≤ k ; w i = (1 − t ) , 1 ≤ i ≤ m. The Jacobian of the transformation ( v 1 , · · · , v d − 1 ) �→ ( t, u 1 , · · · , u k − 1 , w 1 , · · · , w m − 1 ) J = t k − 1 (1 − t ) m − 1 . is 1 − A = t (1 − A 1 ) + (1 − t )(1 − A 2 ) 20

  21. � S ( A ) = (1 − A ( v )) d v = Ω d � 1 � � (1 − A ) d u d w t k − 1 (1 − t ) m − 1 dt = 0 Ω k Ω m � 1 1 � 0 t k (1 − t ) m − 1 dt = (1 − A 1 ( u )) d u ( m − 1)! Ω k � 1 1 � 0 t k − 1 (1 − t ) m dt + (1 − A 2 ( w )) d w ( k − 1)! Ω m = k ! d ! S k ( A 0 ) τ 2 , 1 + m ! d ! S m ( A 0 ) τ 2 , 2 τ 2 = k − B k d − B d τ 2 , 1 + m − B m d − B d τ 2 , 2 where B k = 1 + 1 2 + 1 3 + · · · + 1 k. 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend