multivariate extreme value models
play

Multivariate Extreme Value models Michel Bierlaire - PowerPoint PPT Presentation

Multivariate Extreme Value models Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility LAboratory Multivariate Extreme Value models p. 1/62 Logit Random utility: U in = V in + in in is i.i.d. EV (Extreme Value)


  1. Multivariate Extreme Value models Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility LAboratory Multivariate Extreme Value models – p. 1/62

  2. Logit • Random utility: U in = V in + ε in • ε in is i.i.d. EV (Extreme Value) distributed • ε in is the maximum of many r.v. capturing unobservable attributes, measurement and specification errors. • Key assumption: Independence Multivariate Extreme Value models – p. 2/62

  3. Relax the independence assumption       U 1 n V 1 n ε 1 n . . .       . . .  =  + . . .     U Jn V Jn ε Jn that is U n = V n + ε n and ε n is a vector of random variables. Assumption about the random term: multivariate distribution Multivariate Extreme Value models – p. 3/62

  4. Relax the independence assumption A multivariate random variable ε is represented by a density function f ( ε 1 , . . . , ε J ) and � x 1 � x J P ( ε ≤ x ) = · · · f ( ε ) dε J . . . dε 1 −∞ −∞ where x ∈ R J is a J × 1 vector of constants. Multivariate Extreme Value models – p. 4/62

  5. Probit model • Multivariate normal variable N ( µ, Σ) • µ ∈ R J • Σ ∈ R J × J , definite positive • Density function: 2 ( ε − µ ) T Σ − 1 ( ε − µ ) f ( ε ) = (2 π ) − J 2 | Σ | − 1 2 e − 1 Multivariate Extreme Value models – p. 5/62

  6. Probit model Example: trinomial model U 1 = V 1 + ε 1 U 2 = V 2 + ε 2 U 3 = V 3 + ε 3 and ε ∼ N (0 , Σ) . We have P (2) = P ( U i − U 2 ≤ 0 i = 1 , 2 , 3) U 1 − U 2 = V 1 − V 2 + ε 1 − ε 2 U 3 − U 2 = V 3 − V 2 + ε 3 − ε 2 Multivariate Extreme Value models – p. 6/62

  7. Probit model Matrix notation with � � 1 − 1 0 ∆ 2 = 0 − 1 1 � � U 1 − U 2 ∼ N (∆ 2 V, ∆ 2 Σ∆ T ∆ 2 U = 2 ) U 3 − U 2 Multivariate Extreme Value models – p. 7/62

  8. Probit model In general, we have ∆ i U ∼ N (∆ i V, ∆ i Σ∆ T i ) and P ( i ) = � 0 � 0 P (∆ i U ≤ 0) = · · · f (∆ i ε ) d (∆ i ε ) 1 . . . d (∆ i ε ) J − 1 −∞ −∞ with 2 (∆ i ε − ∆ i V ) T (∆ i Σ∆ T f (∆ i ε ) = (2 π ) − J i | − 1 2 e − 1 i ) − 1 (∆ i ε − ∆ i V ) 2 | ∆ i Σ∆ T Multivariate Extreme Value models – p. 8/62

  9. Probit model • The integral of the density function has no closed form • In high dimensions, numerical integration is computationally infeasible • Therefore, the probit model with more than 5 alternatives is very difficult to use in practice Multivariate Extreme Value models – p. 9/62

  10. Relax the independence assumption • If the CDF F ( ε 1 , . . . , ε J ) of the distribution is known ∂ J F f ( ε 1 , . . . , ε J ) = ( ε 1 , . . . , ε J ) ∂ε 1 · · · ∂ε J • The choice probability is P ( i ) = P ( V 1 + ε 1 ≤ V i + ε i , . . . , V J + ε J ≤ V i + ε i ) = P ( ε 1 ≤ V i + ε i − V 1 , . . . , ε J ≤ V i + ε i − V J ) � ∞ = F i ( V i + ε i − V 1 , . . . , ε i , . . . , V i + ε i − V J ) dε i ε i = −∞ where F i = ∂F/∂ε i . Multivariate Extreme Value models – p. 10/62

  11. Relax the independence assumption Operational solutions: • Generalize the logit: the Nested Logit model • Consider a multivariate distribution such that F is known: the Multivariate Extreme Value model Multivariate Extreme Value models – p. 11/62

  12. Nested logit model • Alternatives within a nest share a random term • Random utility of alt. i in nest C m U i = V i + ε i = V i + ε m + ε im • Assume that ε m are independent across m • ε im are i.i.d. EV with scale param. µ m for each m Multivariate Extreme Value models – p. 12/62

  13. Nested logit model Assume that the nest m is given. P ( i | m ) = P ( U i ≥ U j , j ∈ C m ) = P ( V i + ε m + ε im ≥ V j + ε m + ε jm , j ∈ C m ) = P ( V i + ε im ≥ V j + ε jm , j ∈ C m ) Then we have a logit model: e µ m V i P ( i | m ) = � j ∈ C m e µ m V j Multivariate Extreme Value models – p. 13/62

  14. Nested logit model What is the probability of choosing nest C m ? P ( m ) = P ( max U i ≥ max U j , ∀ k � = m ) = i ∈ C m j ∈ C k P ( ε m + max ( V i + ε im ) ≥ ε k + max ( V j + ε jk ) , ∀ k � = m ) i ∈ C m j ∈ C k Note that V i + ε im is EV( V i , µ m ). Therefore ( V i + ε im ) ∼ EV ( ˜ max V m , µ m ) i ∈ C m where 1 � ˜ e µ m V i V m = ln µ m i ∈ C m See prop. 7, page 105, chap. 5 Multivariate Extreme Value models – p. 14/62

  15. Nested logit model We write the random variable i ∈ C m ( V i + ε im ) = ˜ V m + ε ′ max m Therefore, P ( ε m + ˜ m ≥ ε k + ˜ V m + ε ′ V k + ε ′ P ( m ) = k , ∀ k � = m ) P ( ˜ ε m ≥ ˜ = V m + ˜ V k + ˜ ε k , ∀ k � = m ) Looks familiar, doesn’t it? Multivariate Extreme Value models – p. 15/62

  16. Nested logit model P ( m ) = P ( ˜ ε m ≥ ˜ V m + ˜ V k + ˜ ε k , ∀ k � = m ) Assume that ˜ ε m ∼ EV (0 , µ ) . Then e µ ˜ V m P ( m ) = � k e µ ˜ V k Multivariate Extreme Value models – p. 16/62

  17. Nested logit model Putting everything together: e µ ˜ e µ m V i V m P ( i ) = P ( i | m ) P ( m ) = � � j ∈ C m e µ m V j k e µ ˜ V k with 1 � ˜ e µ m V im V m = ln µ m i ∈ C m Back Multivariate Extreme Value models – p. 17/62

  18. Nested logit model Advantages • Nest partitioning is an intuitive concept • Direct extension of logit • Closed form of the model Drawbacks • Limited correlation structure • What is the actual density function f ( ε ) ? Multivariate Extreme Value models – p. 18/62

  19. MEV models Family of models proposed by McFadden (1978) (called GEV) Idea: a model is generated by a function G : R J + → R + From G , we can build • The cumulative distribution function (CDF) • The probability model • The expected maximum utility Multivariate Extreme Value models – p. 19/62

  20. MEV models 1. G is homogeneous of degree µ > 0 , that is G ( αy ) = α µ G ( y ) 2. y i → + ∞ G ( y 1 , . . . , y i , . . . , y J ) = + ∞ , for each i = 1 , . . . , J , lim 3. the k th partial derivative with respect to k distinct y i is non negative if k is odd and non positive if k is even, i.e., for all (distinct) indices i 1 , . . . , i k ∈ { 1 , . . . , J } , we have ∂ k G ( − 1) k ( y ) ≤ 0 , ∀ y ∈ R J + . ∂y i 1 . . . ∂y i k Multivariate Extreme Value models – p. 20/62

  21. MEV models • CDF: F ( ε 1 , . . . , ε J ) = e − G ( e − ε 1 ,...,e − εJ ) e Vi +ln Gi ( eV 1 ,...,eVJ ) j ∈ C e Vj +ln Gj ( eV 1 ,...,eVJ ) with G i = ∂G • Probability: P ( i | C ) = ∂y i . This � is a closed form • Expected maximum utility: V C = ln G ( ... )+ γ where γ is Euler’s µ constant. • Note: P ( i | C ) = ∂V C ∂V i . Multivariate Extreme Value models – p. 21/62

  22. MEV models Euler’s constant � n � � + ∞ 1 � e − x ln xdx = lim γ = − k − ln n n →∞ 0 k =1 Multivariate Extreme Value models – p. 22/62

  23. Proofs We show first that F ( ε 1 , . . . , ε J ) = e − G ( e − ε 1 ,...,e − εJ ) defines a multivariate CDF. • F goes to zero when one ε goes to −∞ e − G ( e − ε 1 ,...,e + ∞ ,...,e − εJ ) F ( ε 1 , . . . , −∞ , . . . , ε J ) = e − G ( e − ε 1 ,..., + ∞ ,...,e − εJ ) = e −∞ = = 0 Multivariate Extreme Value models – p. 23/62

  24. Proofs F ( ε 1 , . . . , ε J ) = e − G ( e − ε 1 ,...,e − εJ ) • F goes to one when all ε go to + ∞ e − G ( e −∞ ,...,e −∞ ) F (+ ∞ , . . . , + ∞ ) = e − G (0 ,..., 0) = e 0 = = 1 Multivariate Extreme Value models – p. 24/62

  25. Proofs F ( ε 1 , . . . , ε J ) = e − G ( e − ε 1 ,...,e − εJ ) • The function ∂ J F f ( ε 1 , . . . , ε J ) = ( ε 1 , . . . , ε J ) ≥ 0 ∂ε 1 · · · ε J so that it defines a PDF. Multivariate Extreme Value models – p. 25/62

  26. Proofs Define recursively Q 1 = G 1 = ∂G/∂y 1 ≥ 0 Q k = Q k − 1 G k − ∂Q k − 1 /∂y k We show recursively that all (signed) terms of Q k are ≥ 0 Assume it true for Q k − 1 Q k − 1 = Q k − 2 G k − 1 − ∂Q k − 2 /∂y k − 1 � �� � � �� � ≥ 0 ≥ 0 As G k = ∂G/∂y k ≥ 0 , we have Q k − 1 G k ≥ 0 Multivariate Extreme Value models – p. 26/62

  27. Proofs Q k − 1 = Q k − 2 G k − 1 − ∂Q k − 2 /∂y k − 1 � �� � � �� � ≥ 0 ≥ 0 ∂Q k − 1 /∂y k = ∂Q k − 2 /∂y k G k − 1 + Q k − 2 ∂G k − 1 /∂y k ∂ 2 Q k − 2 /∂y k − 1 ∂y k − By assumption, each increase of the order of derivatives imposes a change of sign, so that ∂Q k − 1 /∂y k ≤ 0 Therefore Q k = Q k − 1 G k − 1 − ∂Q k − 1 /∂y k � �� � � �� � ≥ 0 ≥ 0 Multivariate Extreme Value models – p. 27/62

  28. Proofs F ( ε 1 , . . . , ε J ) = e − G ( e − ε 1 ,...,e − εJ ) We show recursively that ∂ J F = e − ε 1 · · · e − ε J Q J F ≥ 0 ∂ε 1 · · · ε J By direct derivation, we have ∂F = e − ε 1 G 1 F = e − ε 1 Q 1 F ∂ε 1 Multivariate Extreme Value models – p. 28/62

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend