multivariate extreme value models
play

Multivariate Extreme Value models Michel Bierlaire - PowerPoint PPT Presentation

Multivariate Extreme Value models Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility LAboratory Multivariate Extreme Value models p. 1/44 Logit Random utility: U in = V in + in in is i.i.d. EV (Extreme Value)


  1. Multivariate Extreme Value models Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility LAboratory Multivariate Extreme Value models – p. 1/44

  2. Logit • Random utility: U in = V in + ε in • ε in is i.i.d. EV (Extreme Value) distributed • ε in is the maximum of many r.v. capturing unobservable attributes, measurement and specification errors. • Key assumption: Independence Multivariate Extreme Value models – p. 2/44

  3. Relax the independence assumption       U 1 n V 1 n ε 1 n       . . . . . .  =  +     . . . U Jn V Jn ε Jn that is U n = V n + ε n and ε n is a vector of random variables. Assumption about the random term: multivariate distribution Multivariate Extreme Value models – p. 3/44

  4. Relax the independence assumption A multivariate random variable ε is represented by a density function f ( ε 1 , . . . , ε J ) and � x 1 � x J P ( ε ≤ x ) = · · · f ( ε ) dε J . . . dε 1 −∞ −∞ where x ∈ R J is a J × 1 vector of constants. Multivariate Extreme Value models – p. 4/44

  5. Probit model • Multivariate normal variable N ( µ, Σ) • µ ∈ R J • Σ ∈ R J × J , definite positive • Density function: 2 ( ε − µ ) T Σ − 1 ( ε − µ ) f ( ε ) = (2 π ) − J 2 | Σ | − 1 2 e − 1 Multivariate Extreme Value models – p. 5/44

  6. Probit model Example: trinomial model U 1 = V 1 + ε 1 U 2 = V 2 + ε 2 U 3 = V 3 + ε 3 and ε ∼ N (0 , Σ) . We have P (2) = P ( U i − U 2 ≤ 0 i = 1 , 2 , 3) U 1 − U 2 = V 1 − V 2 + ε 1 − ε 2 U 3 − U 2 = V 3 − V 2 + ε 3 − ε 2 Multivariate Extreme Value models – p. 6/44

  7. Probit model Matrix notation with � � 1 − 1 0 ∆ 2 = 0 − 1 1 � � U 1 − U 2 ∼ N (∆ 2 V, ∆ 2 Σ∆ T ∆ 2 U = 2 ) U 3 − U 2 Multivariate Extreme Value models – p. 7/44

  8. Probit model In general, we have ∆ i U ∼ N (∆ i V, ∆ i Σ∆ T i ) and P ( i ) = � 0 � 0 P (∆ i U ≤ 0) = · · · f (∆ i ε ) d (∆ i ε ) 1 . . . d (∆ i ε ) J − 1 −∞ −∞ with 2 (∆ i ε − ∆ i V ) T (∆ i Σ∆ T f (∆ i ε ) = (2 π ) − J i | − 1 2 e − 1 i ) − 1 (∆ i ε − ∆ i V ) 2 | ∆ i Σ∆ T Multivariate Extreme Value models – p. 8/44

  9. Probit model • The integral of the density function has no closed form • In high dimensions, numerical integration is computationally infeasible • Therefore, the probit model with more than 5 alternatives is very difficult to use in practice Multivariate Extreme Value models – p. 9/44

  10. Relax the independence assumption Assume that ε n is a multivariate random variable with • CDF: F ε n ( ξ 1 , . . . , ξ J n ) ∂ Jn F • pdf: f ε n ( ξ 1 , . . . , ξ J n ) = ∂ξ 1 ··· ∂ξ Jn ( ξ 1 , . . . , ξ J n ) . • The choice probability is P n (1) = Pr( V 2 n + ε 2 n ≤ V 1 n + ε 1 n , . . . , V Jn + ε Jn ≤ V 1 n + ε 1 n ) , or P n (1) = Pr( ε 2 n − ε 1 n ≤ V 1 n − V 2 n , . . . , ε Jn − ε 1 n ≤ V 1 n − V Jn ) . Multivariate Extreme Value models – p. 10/44

  11. Relax the independence assumption Change of variables: ξ 1 n = ε 1 n , ξ in = ε in − ε 1 n , i = 2 , . . . , J n , that is       ξ 1 n 1 0 · · · 0 0 ε 1 n       ξ 2 n − 1 1 · · · 0 0 ε 2 n             . . .       . . . = . . . .                   ξ ( J n − 1) n − 1 0 · · · 1 0 ε ( J n − 1) n ξ J n n − 1 0 · · · 0 1 ε J n n and P n (1) = Pr( ξ 2 n ≤ V 1 n − V 2 n , . . . , ξ J n n ≤ V 1 n − V J n n ) . Multivariate Extreme Value models – p. 11/44

  12. Relax the independence assumption P n (1) = Pr( ξ 2 n ≤ V 1 n − V 2 n , . . . , ξ J n n ≤ V 1 n − V J n n ) . • Only J n − 1 inequalities. • ξ 1 n can take any value. • Choice probability = CDF of ( ξ 2 n , . . . , ξ J n n ) evaluated at ( V 1 n − V 2 n , . . . , V 1 n − V J n n ) . P n (1) = F ξ 1 n ,ξ 2 n ,...,ξ Jn (+ ∞ , V 1 n − V 2 n , . . . , V 1 n − V J n n ) � + ∞ � V 1 n − V 2 n � V 1 n − V Jnn = · · · f ξ 1 n ,ξ 2 n ,...,ξ Jn ( ξ 1 , ξ 2 , . . . , ξ J n ) dξ, ξ 1 = −∞ ξ 2 = −∞ ξ Jn = −∞ Multivariate Extreme Value models – p. 12/44

  13. Relax the independence assumption � + ∞ � V 1 n − V 2 n � V 1 n − V Jnn P n (1) · · · f ξ 1 n ,ξ 2 n ,...,ξ Jn ( ξ 1 , ξ 2 , . . . , ξ J n ) dξ. ξ 1 = −∞ ξ 2 = −∞ ξ Jn = −∞ • Change of variables: determinant 1. • pdf of ( ξ 1 n , . . . , ξ J n n ) = pdf of ( ε 1 n , . . . , ε J n n ) � + ∞ � V 1 n − V 2 n + ε 1 � V 1 n − V Jnn + ε 1 P n (1) = · · · f ε 1 n ,ε 2 n ,...,ε Jn ( ε 1 , ε 2 , . . . , ε J n ) dε. ε 1 = −∞ ε 2 = −∞ ε Jn = −∞ or � + ∞ ∂F ε 1 n ,ε 2 n ,...,ε Jn P n (1) = ( ε 1 , V 1 n − V 2 n + ε 1 , . . . , V 1 n − V J n n + ε 1 ) dε 1 . ∂ε 1 ε 1 = −∞ Multivariate Extreme Value models – p. 13/44

  14. Multivariate Extreme Value model • ε n = ( ε 1 n , . . . , ε Jn ) follows a multivariate extreme value distribution if it has the CDF: F ε n ( ε 1 n , . . . , ε Jn ) = e − G ( e − ε 1 n ,...,e − εJn ) , where G : R J n + → R + is a positive function with positive arguments. • To be a valid CDF, it must verify the following properties. • (i) the limit property F ε n ( ε 1 n , . . . , −∞ , . . . , ε Jn ) = 0 , or G ( y 1 n , . . . , + ∞ , . . . , y Jn ) = + ∞ . Multivariate Extreme Value models – p. 14/44

  15. Multivariate Extreme Value model • (ii) the zero property F ε n (+ ∞ , . . . , + ∞ ) = 1 . or G (0 , . . . , 0) = 0 . • (iii) the strong alternating sign property: • Any partial derivative of F ε n defines a density function of a marginal distribution. • To be a valid density function, it has to be non negative. • For any set of � J n ≤ J n distinct indices i 1 , . . . , i � J n , ∂ � J n F ε n ( ε 1 n , . . . , ε J n n ) ≥ 0 . ∂ε i 1 n · · · ∂ε i � Jn n Multivariate Extreme Value models – p. 15/44

  16. Multivariate Extreme Value model F ε n ( ε 1 n , . . . , ε Jn ) = e − G ( e − ε 1 n ,...,e − εJn ) , • (iii) the strong alternating sign property (ctd). • The right-hand side changes sign each time it is differentiated. • To obtain a non negative sign, G must also change sign each time it is differentiated. • For any set of � J n distinct indices i 1 , . . . , i � J n , ( − 1) � J n − 1 G i 1 ,...,i � Jn ≥ 0 . Multivariate Extreme Value models – p. 16/44

  17. Multivariate Extreme Value model We need another property: homogeneity. • A function G is homogeneous of degree µ , or µ -homogeneous, if G ( αy ) = α µ G ( y ) , ∀ α > 0 and y ∈ R J + . • It will imply two results: • the marginals are univariate extreme value distributions, • the choice model has a closed form. Multivariate Extreme Value models – p. 17/44

  18. Multivariate Extreme Value model • i th marginal distribution: F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = e − G (0 ,..., 0 ,e − εin , 0 ,..., 0) . • If G is µ -homogeneous, we have G (0 , . . . , 0 , e − ε in , 0 , . . . , 0) = e − µε in G (0 , . . . , 0 , 1 , 0 , . . . , 0) , or equivalently, G (0 , . . . , 0 , e − ε in , 0 , . . . , 0) = e − µε in +log G (0 ,..., 0 , 1 , 0 ,..., 0) , • Define log G (0 , . . . , 0 , 1 , 0 , . . . , 0) = µη , so that � − e − µ ( ε in − η ) � F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = exp . Multivariate Extreme Value models – p. 18/44

  19. Multivariate Extreme Value model F ε n ( ε 1 n , . . . , ε Jn ) = e − G ( e − ε 1 n ,...,e − εJn ) , � − e − µ ( ε in − η ) � F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = exp . • Four properties (actually, three). • Valid CDF. • Marginals: univariate extreme value distribution. • We have a multivariate extreme value distribution. Multivariate Extreme Value models – p. 19/44

  20. MEV: choice model F ε n ( ε 1 n , . . . , ε Jn ) = e − G ( e − ε 1 n ,...,e − εJn ) , � + ∞ ∂F ε 1 n ,ε 2 n ,...,ε Jn P n ( i ) = ( . . . , V in − V ( i − 1) n + ε, ε, V in − V ( i +1) n + ε, . . . ) dε. ∂ε i ε = −∞ As G is µ -homogeneous, G i = ∂G/∂y i is µ − 1 -homogeneous and ∂F ε 1 n ,ε 2 n ,...,ε Jn ( . . . , V in − V ( i − 1) n + ε, ε, V in − V ( i +1) n + ε, . . . ) ∂ε i = e − ε G i ( . . . , e − V in + V ( i − 1) n − ε , e − ε , e − V in + V ( i +1) n − ε , . . . ) � � − G ( . . . , e − V in + V ( i − 1) n − ε , e − ε , e − V in + V ( i +1) n − ε , . . . ) exp = e − ε e − ( µ − 1) ε e − ( µ − 1) V in G i ( . . . , e V ( i − 1) n , e V i n , e V ( i +1) n , . . . ) � � − e − µε e − µV in G ( . . . , e V ( i − 1) n , e V in , e V ( i +1) n , . . . ) . exp Multivariate Extreme Value models – p. 20/44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend