mathematics
play

MATHEMATICS 1 CONTENTS Extreme values in one dimension Extreme - PowerPoint PPT Presentation

Extreme values in two dimensions BUSINESS MATHEMATICS 1 CONTENTS Extreme values in one dimension Extreme values in two dimensions Modified second-order conditions Example Old exam question Further study 2 EXTREME VALUES IN TWO


  1. Extreme values in two dimensions BUSINESS MATHEMATICS 1

  2. CONTENTS Extreme values in one dimension Extreme values in two dimensions Modified second-order conditions Example Old exam question Further study 2

  3. EXTREME VALUES IN TWO DIMENSIONS 3

  4. EXTREME VALUES IN ONE DIMENSION Consider a smooth function 𝑔 𝑦 1. Necessary first-order condition for extreme value 𝑒𝑔 𝑦 = 0 β‡’ stationary point 𝑒𝑦 2. Sufficient second-order condition at stationary point 𝑒 2 𝑔 𝑦 < 0 β‡’ maximum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 > 0 β‡’ minimum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 β–ͺ = 0 β‡’? 𝑒𝑦 2 4

  5. EXTREME VALUES IN ONE DIMENSION Consider a smooth function 𝑔 𝑦 1. Necessary first-order condition for extreme value 𝑒𝑔 𝑦 = 0 β‡’ stationary point 𝑒𝑦 2. Sufficient second-order condition at stationary point 𝑒 2 𝑔 𝑦 < 0 β‡’ maximum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 > 0 β‡’ minimum β–ͺ 𝑒𝑦 2 𝑒 2 𝑔 𝑦 β–ͺ = 0 β‡’? 𝑒𝑦 2 5

  6. EXERCISE 1 Given is 𝑔 𝑦, 𝑧 = 2𝑦𝑧 βˆ’ 2x + y βˆ’ 2 Find the stationary points. 6

  7. EXTREME VALUES IN TWO DIMENSIONS In some cases: true (maximum) 8

  8. EXTREME VALUES IN TWO DIMENSIONS In other cases: false (saddle point) 9

  9. MODIFIED SECOND-ORDER CONDITIONS Additional sufficient second-order condition for extreme point πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ not > 0 and > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ nor < 0 and < 0 πœ–π‘¦ 2 πœ–π‘§ 2 But….. 10

  10. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 11

  11. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: Recall that 𝑔 𝑦𝑧 = 𝑔 𝑧𝑦 2 2 = 𝑔 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 so that 𝑔 𝑦𝑧 𝑔 𝑦𝑧 𝑧𝑦 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 12

  12. MODIFIED SECOND-ORDER CONDITIONS 1. Testing for extreme point: 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 βˆ’ > 0 πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 > 0 or 𝑔 [ 𝑔 𝑧𝑦 > 0 ] 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 𝑔 𝑦𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 2. Then, maximum point: < 0 or < 0 πœ–π‘¦ 2 πœ–π‘§ 2 [ 𝑔 𝑦𝑦 < 0 or 𝑔 𝑧𝑧 < 0 ] πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 minimum point: > 0 or > 0 πœ–π‘¦ 2 πœ–π‘§ 2 [ 𝑔 𝑦𝑦 > 0 or 𝑔 𝑧𝑧 > 0 ] 13

  13. EXAMPLE Consider 𝑔 𝑦, 𝑧 = 𝑦 2 βˆ’ 𝑦𝑧 + 𝑧 2 βˆ’ 4𝑧 + 5 1. Finding stationary points: πœ–π‘” β–ͺ πœ–π‘¦ = 2𝑦 βˆ’ 𝑧 = 0 πœ–π‘” β–ͺ πœ–π‘§ = βˆ’π‘¦ + 2𝑧 βˆ’ 4 = 0 Result: 𝑦, 𝑧 = 4 3 , 8 3 14

  14. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 3 , 8 4 3 is an extreme point. 15

  15. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 4 3 , 8 3 is an extreme point. πœ– 2 𝑔 Further πœ–π‘¦ 2 = 2 > 0 , so 4 3 is a minimum point with minimum value 𝑔 3 , 8 4 3 , 8 3 = βˆ’ 1 3 16

  16. EXAMPLE CONTINUTED 2. Second-order test for 𝑦, 𝑧 = 3 : 4 3 , 8 2 πœ– 2 𝑔 πœ– 2 𝑔 πœ– 2 𝑔 = 2 Γ— 2 βˆ’ βˆ’1 2 = 3 πœ–π‘§ 2 βˆ’ πœ–π‘¦ 2 πœ–π‘¦πœ–π‘§ So 4 3 , 8 3 is an extreme point. πœ– 2 𝑔 Further πœ–π‘¦ 2 = 2 > 0 , so 4 3 is a minimum point with minimum value 𝑔 3 , 8 4 3 , 8 3 = βˆ’ 1 3 17

  17. MODIFIED SECOND-ORDER CONDITIONS Other cases 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 β–ͺ < 0 β‡’ saddle point βˆ’ πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 < 0 ] [ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 πœ– 2 𝑔 𝑦,𝑧 = 0 β‡’? (no conclusion from this method) β–ͺ βˆ’ πœ–π‘¦ 2 πœ–π‘§ 2 πœ–π‘¦πœ–π‘§ 2 = 0 ] [ 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 18

  18. EXTREME VALUES IN TWO DIMENSIONS In other cases: false (saddle point) 19

  19. SUMMARY OPTIMALITY CONDITIONS 1. First-order conditions for a stationary point: 𝑦 = 0 and 𝑔 𝑔 𝑧 = 0 2. Second-order conditions (for solutions to 1.): 2 > 0 β‡’ yes, this is an extreme point 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2.a 𝑦𝑦 < 0 β‡’ maximum (or 𝑔 𝑧𝑧 < 0 ) 𝑔 2.b 𝑦𝑦 > 0 β‡’ minimum (or 𝑔 𝑧𝑧 > 0 ) 𝑔 2 < 0 β‡’ saddle point 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 2 = 0 β‡’ ?(no conclusion) 𝑔 𝑦𝑦 𝑔 𝑧𝑧 βˆ’ 𝑔 𝑦𝑧 20

  20. EXERCISE 2 Given is 𝑔 𝑦, 𝑧 = 2𝑦𝑧 2 βˆ’ 4𝑦 2 𝑧 3 . Determine the formula for distinguishing extreme values from other stationary points. 21

  21. EXAMPLE Consider the function 𝑔 𝑦, 𝑧 = 1 2 𝑦 2 𝑓 𝑧 βˆ’ 1 3 𝑦 3 βˆ’ 𝑧𝑓 3𝑧 3 and 𝑓 βˆ’ 1 1 1 Are 0, βˆ’ 6 extreme points of 𝑔 ? 6 , βˆ’ What is the nature of the extreme points? 23

  22. EXAMPLE CONTINUED First, use first-order conditions to verify stationary points πœ–π‘” πœ–π‘¦ = 𝑦𝑓 𝑧 βˆ’ 𝑦 2 β–ͺ πœ–π‘” 2 𝑦 2 𝑓 𝑧 βˆ’ 𝑓 3𝑧 βˆ’ 3𝑧𝑓 3𝑧 1 β–ͺ πœ–π‘§ = Then check the nature of these points (if any) with the second-order conditions πœ– 2 𝑔 πœ–π‘¦ 2 = 𝑓 𝑧 βˆ’ 2𝑦 β–ͺ πœ– 2 𝑔 1 2 𝑦 2 𝑓 𝑧 βˆ’ 6𝑓 3𝑧 βˆ’ 9𝑧𝑓 3𝑧 β–ͺ πœ–π‘§ 2 = πœ– 2 𝑔 πœ–π‘¦πœ–π‘§ = 𝑦𝑓 𝑧 β–ͺ 24

  23. OLD EXAM QUESTION 23 April 2015, Q2c 25

  24. OLD EXAM QUESTION 10 December 2014, Q2b 26

  25. FURTHER STUDY Sydsæter et al. 5/E 13.1-13.3 Tutorial exercises week 4 local extreme value 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend