multivariate extreme value models
play

Multivariate Extreme Value models Michel Bierlaire Transport and - PowerPoint PPT Presentation

Multivariate Extreme Value models Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F ed erale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate


  1. Multivariate Extreme Value models Michel Bierlaire Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique F´ ed´ erale de Lausanne M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 1 / 68

  2. Outline Outline Introduction 1 Multivariate Extreme Value distribution 2 MEV model 3 Examples of MEV models 4 Cross nested logit model 5 Network MEV model 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 2 / 68

  3. Introduction Logit Assumptions Random utility: U in = V in + ε in ε in is i.i.d. EV (Extreme Value) distributed ε in is the maximum of many r.v. capturing unobservable attributes, measurement and specification errors. i.i.d. independent and identically distributed. M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 3 / 68

  4. Introduction Relax the independence assumption Multivariate distribution       ε 1 n U 1 n V 1 n  .   .   .  . . .  =  +     . . . U Jn V Jn ε Jn that is U n = V n + ε n and ε n is a vector of random variables. M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 4 / 68

  5. Multivariate Extreme Value distribution Outline Introduction 1 Multivariate Extreme Value distribution 2 MEV model 3 Examples of MEV models 4 Cross nested logit model 5 Network MEV model 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 5 / 68

  6. Multivariate Extreme Value distribution Multivariate Extreme Value distribution Definition ε n = ( ε 1 n , . . . , ε Jn ) follows a multivariate extreme value distribution if it has the CDF F ε n ( ε 1 n , . . . , ε Jn ) = e − G ( e − ε 1 n ,..., e − ε Jn ) , where G : R J n + → R + is a positive function with positive arguments. Valid CDF must verify three properties F ε n ( ε 1 n , . . . , −∞ , . . . , ε J n n ) = 0 . F ε n (+ ∞ , . . . , + ∞ ) = 1 . For any set of � J n ≤ J n distinct indices i 1 , . . . , i � J n , ∂ � J n F ε n ( ε 1 n , . . . , ε J n n ) ≥ 0 . ∂ε i 1 n · · · ∂ε i � Jn n M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 6 / 68

  7. Multivariate Extreme Value distribution The limit property Valid CDF F ε n ( ε 1 n , . . . , −∞ , . . . , ε J n n ) = 0 . MEV F ε n ( ε 1 n , . . . , ε J n n ) = e − G ( e − ε 1 n ,..., e − ε Jnn ) . Valid G function G ( y 1 n , . . . , + ∞ , . . . , y J n n ) = + ∞ . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 7 / 68

  8. Multivariate Extreme Value distribution The zero property Valid CDF F ε n (+ ∞ , . . . , + ∞ ) = 1 . MEV F ε n ( ε 1 n , . . . , ε J n n ) = e − G ( e − ε 1 n ,..., e − ε Jnn ) . Valid G function G (0 , . . . , 0) = 0 . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 8 / 68

  9. Multivariate Extreme Value distribution The strong alternating sign property Valid CDF ∂ � J n F ε n ( ε 1 n , . . . , ε J n n ) ≥ 0 . ∂ε i 1 n · · · ∂ε i � Jn n MEV F ε n ( ε 1 n , . . . , ε J n n ) = e − G ( e − ε 1 n ,..., e − ε Jnn ) . Valid G function (notation: G i = ∂ G /∂ y i ) The right-hand side changes sign each time it is differentiated. To obtain ≥ 0, G must also change sign each time it is differentiated. For any set of � J n distinct indices i 1 , . . . , i � J n , � J n − 1 G i 1 ,..., i � ( − 1) Jn ≥ 0 . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 9 / 68

  10. Multivariate Extreme Value distribution Homogeneity We need another property: homogeneity A function G is homogeneous of degree µ , or µ -homogeneous, if G ( α y ) = α µ G ( y ) , ∀ α > 0 and y ∈ R J n + . It will imply two results the marginals are univariate extreme value distributions, the choice model has a closed form. M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 10 / 68

  11. Multivariate Extreme Value distribution Marginal distribution i th marginal distribution F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = e − G (0 ,..., 0 , e − ε in , 0 ,..., 0) . If G is µ -homogeneous, we have G (0 , . . . , 0 , e − ε in , 0 , . . . , 0) = e − µε in G (0 , . . . , 0 , 1 , 0 , . . . , 0) , or equivalently, G (0 , . . . , 0 , e − ε in , 0 , . . . , 0) = e − µε in +log G (0 ,..., 0 , 1 , 0 ,..., 0) , Define log G (0 , . . . , 0 , 1 , 0 , . . . , 0) = µη , so that � − e − µ ( ε in − η ) � F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = exp . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 11 / 68

  12. Multivariate Extreme Value distribution Multivariate Extreme Value distribution CDF F ε n ( ε 1 n , . . . , ε J n n ) = e − G ( e − ε 1 n ,..., e − ε Jnn ) , i th marginal: univariate extreme value distribution � − e − µ ( ε in − η ) � F ε n (+ ∞ , . . . , + ∞ , ε in , + ∞ , . . . , + ∞ ) = exp . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 12 / 68

  13. Multivariate Extreme Value distribution Multivariate Extreme Value distribution Three conditions on G The limit property G ( y 1 n , . . . , + ∞ , . . . , y J n n ) = + ∞ . The strong alternating sign property � J n − 1 G i 1 ,..., i � ( − 1) Jn ≥ 0 . Homogeneity (which implies the zero property) G ( α y ) = α µ G ( y ) , ∀ α > 0 and y ∈ R J n + . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 13 / 68

  14. MEV model Outline Introduction 1 Multivariate Extreme Value distribution 2 MEV model 3 Examples of MEV models 4 Cross nested logit model 5 Network MEV model 6 M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 14 / 68

  15. MEV model Derivation from first principles Probability model P ( i |C n ) = Pr( U in ≥ U jn , ∀ j ∈ C n ) , Random utility U in = V in + ε in . Random utility model P ( i |C n ) = Pr( V in + ε in ≥ V jn + ε jn , ∀ j ∈ C n ) , or P ( i |C n ) = Pr( ε jn − ε in ≤ V in − V jn , ∀ j ∈ C n ) . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 15 / 68

  16. MEV model General derivation Joint distributions of ε n Assume that ε n = ( ε 1 n , . . . , ε J n n ) is a multivariate random variable with CDF F ε n ( ε 1 , . . . , ε J n ) and pdf ∂ J n F f ε n ( ε 1 , . . . , ε J n ) = ( ε 1 , . . . , ε J n ) . ∂ε 1 · · · ∂ε J n Derive the model for the first alternative (wlog) P n (1 |C n ) = Pr( V 2 n + ε 2 n ≤ V 1 n + ε 1 n , . . . , V Jn + ε Jn ≤ V 1 n + ε 1 n ) , P n (1 |C n ) = Pr( ε 2 n − ε 1 n ≤ V 1 n − V 2 n , . . . , ε Jn − ε 1 n ≤ V 1 n − V Jn ) . M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 16 / 68

  17. MEV model Derivation Model P n (1 |C n ) = Pr( ε 2 n − ε 1 n ≤ V 1 n − V 2 n , . . . , ε Jn − ε 1 n ≤ V 1 n − V Jn ) . Change of variables ξ 1 n = ε 1 n , ξ in = ε in − ε 1 n , i = 2 , . . . , J n , that is       ξ 1 n ε 1 n 1 0 · · · 0 0       ξ 2 n − 1 1 · · · 0 0 ε 2 n             . . . . . . = .       . . .             ξ ( J n − 1) n ε ( J n − 1) n − 1 0 · · · 1 0 ξ J n n − 1 0 · · · 0 1 ε J n n M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 17 / 68

  18. MEV model Derivation Model in ε P n (1 |C n ) = Pr( ε 2 n − ε 1 n ≤ V 1 n − V 2 n , . . . , ε Jn − ε 1 n ≤ V 1 n − V Jn ) . Change of variables ξ 1 n = ε 1 n , ξ in = ε in − ε 1 n , i = 2 , . . . , J n , Model in ξ P n (1 |C n ) = Pr( ξ 2 n ≤ V 1 n − V 2 n , . . . , ξ J n n ≤ V 1 n − V J n n ) . Note The determinant of the change of variable matrix is 1, so that ε and ξ have the same pdf M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 18 / 68

  19. MEV model Derivation P n (1 |C n ) = Pr( ξ 2 n ≤ V 1 n − V 2 n , . . . , ξ J n n ≤ V 1 n − V J n n ) = F ξ 1 n ,ξ 2 n ,...,ξ Jn (+ ∞ , V 1 n − V 2 n , . . . , V 1 n − V J n n ) � + ∞ � V 1 n − V 2 n � V 1 n − V Jnn = · · · f ξ 1 n ,ξ 2 n ,...,ξ Jn ( ξ 1 , ξ 2 , . . . , ξ J n ) d ξ, ξ 1 = −∞ ξ 2 = −∞ ξ Jn = −∞ � + ∞ � V 1 n − V 2 n + ε 1 � V 1 n − V Jnn + ε 1 = · · · f ε 1 n ,ε 2 n ,...,ε Jn ( ε 1 , ε 2 , . . . , ε J n ) d ε, ε 1 = −∞ ε 2 = −∞ ε Jn = −∞ M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 19 / 68

  20. MEV model Derivation � + ∞ � V 1 n − V 2 n + ε 1 � V 1 n − V Jnn + ε 1 P n (1 |C n ) = · · · f ε 1 n ,ε 2 n ,...,ε Jn ( ε 1 , ε 2 , . . . , ε J n ) d ε 1 = −∞ ε 2 = −∞ ε Jn = −∞ � + ∞ ∂ F ε 1 n ,ε 2 n ,...,ε Jn P n (1 |C n ) = ( ε 1 , V 1 n − V 2 n + ε 1 , . . . , V 1 n − V J n n + ε 1 ) d ε 1 . ∂ε 1 ε 1 = −∞ The random utility model: P n ( i |C n ) = � + ∞ ∂ F ε 1 n ,ε 2 n ,...,ε Jn ( . . . , V in − V ( i − 1) n + ε, ε, V in − V ( i +1) n + ε, . . . ) d ε ∂ε i ε = −∞ M. Bierlaire (TRANSP-OR ENAC EPFL) Multivariate Extreme Value models 20 / 68

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend