turbulent drag reduction at moderate reynolds numbers via
play

Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise - PowerPoint PPT Presentation

Introduction Flow Unit for Drag Reduction Results Conclusions Davide Gatti 1 , 2 , Maurizio Quadrio 1 Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves 1 POLITECNICO DI MILANO 2 CENTER OF SMART INTERFACES


  1. Introduction Flow Unit for Drag Reduction Results Conclusions Davide Gatti 1 , 2 , Maurizio Quadrio 1 Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves 1 POLITECNICO DI MILANO 2 CENTER OF SMART INTERFACES Technische Universit¨ at Darmstadt

  2. Introduction Flow Unit for Drag Reduction Results Conclusions Turbulent skin-friction Drag Reduction Motivation • Economical benefits • Environmental benefits • Better understanding of turbulence Our focus • The effects of Re on a particular control strategy 1/17

  3. Introduction Flow Unit for Drag Reduction Results Conclusions A promising strategy Streamwise-traveling waves of spanwise wall velocity (Quadrio et al. , JFM 2009) w w ( x , t ) = A sin( κ x x − ω t ) c = ω κ x 2h λ y z x Flow δ 2/17

  4. Introduction Flow Unit for Drag Reduction Results Conclusions High performances R = P 0 − P Drag reduction rate: P 0 � L x � L z � T 1 ∂ w Input power: P in = ∂ y d t d x d z w w L x L z T 0 0 0 S = R − P in Power saving rate: P 0 3/17

  5. Introduction Flow Unit for Drag Reduction Results Conclusions High drag reduction achievable (Quadrio et al. , JFM 2009) 5 0 3 w w ( x , t ) = A sin( κ x x − ω t ) -20 36 41 43 45 45 46 44 5 -20 -23 -23 -22 -17 -10 -2 c = ω 0 30 κ x 0 20 23 8 0 40 4 0 15 38 41 44 46 45 36 6 -15 -18 2 10 10 $% λ 38 46 -16 -21 4 " ! # &'() 31 42 45 47 -20 24 45 13 -10 3 δ 40 46 -15 -18 0 2 20 0 0 15 41 0 -8 -17 0 8 15 4 κ 1 - k 47 45 47 33 -16 -2 17 0 3 2 18 21 29 35 43 45 46 46 32 -7 -14 3 16 0 44 46 48 48 3 34 -14 21 30 33 40 0 0 0 45 46 47 40 8 1 -8 -10 1 13 24 20 40 10 31 1 21 34 37 41 45 45 47 39 31 18 10 0 3 -3 -6 -9 -9 -1 7 14 19 26 24 16 33 36 40 42 42 42 36 14 1 -7 1 24 28 20 20 2 0 32 36 37 38 37 36 26 1 -8 -1 19 29 29 24 16 34 36 35 33 22 5 -9 4 27 32 0 0 16 18 22 27 32 34 33 34 33 33 33 32 31 27 21 5 0 5 3 0 -6 -3 -7 -7 -9 -7 -9 -7 -6 -3 5 0 0 3 5 21 27 31 32 33 34 33 34 32 27 22 18 16 -3 -2 -1 0 1 2 3 ω ω 4/17

  6. Introduction Flow Unit for Drag Reduction Results Conclusions What happens at high Re ? Two possible scenarios 50 Unknown 40 Zone 30 100 R 20 ”Well-known” Zone 10 ◦ • Numerical • ◦ Experimental 0 0 500 1000 1500 2000 2500 3000 Re τ 5/17

  7. Introduction Flow Unit for Drag Reduction Results Conclusions What happens at high Re ? Two possible scenarios 50 Unknown 40 Zone 30 100 R 1 20 ”Well-known” 2 Zone 10 ◦ • Numerical • ◦ Experimental 0 0 500 1000 1500 2000 2500 3000 Re τ 5/17

  8. Introduction Flow Unit for Drag Reduction Results Conclusions Several means of investigation ✻ exceeds present modeling skills RANS high our attempt: Smagorinsky model fails Modeling error LES Touber and Leschziner, JFM 2012 : high computational costs and low reliability prohibitive computational costs DNS for a parametric study none Experiments difficult drag measurements and more 6/17

  9. Introduction Flow Unit for Drag Reduction Results Conclusions Our approach Up to Re τ = 2000 with DNS of channels of reduced size Pros Cons • No modeling errors • Discretization errors at the large scales • No resolution errors 7/17

  10. Introduction Flow Unit for Drag Reduction Results Conclusions Neither minimal nor full 0 0 0 2 = + x L L + z = 1000 8/17

  11. Introduction Flow Unit for Drag Reduction Results Conclusions Neither minimal nor full 8 6 7 3 = + x L L + z = 1884 8/17

  12. Introduction Flow Unit for Drag Reduction Results Conclusions Neither minimal nor full 0 5 2 = + x L L + z = 100 8/17

  13. Introduction Flow Unit for Drag Reduction Results Conclusions Simulation time Larger fluctuations of the space-averaged wall shear (Ω) σ Ω Ω treated as a measure: σ Ω = C √ T sim optimal compromise between space and time average 7 6 5 MFU Full Jim´ enez & Moin, JFM 1991 0 200 400 600 800 1000 tU p / h 9/17

  14. Introduction Flow Unit for Drag Reduction Results Conclusions Effects on drag reduction κ x = 0 (oscillating wall) 45 • Reduced 100 R DNS 40 35 30 25 L + x × L + z 20 10 5 10 6 10 7 ours full 10/17

  15. Introduction Flow Unit for Drag Reduction Results Conclusions Effects on drag reduction κ x = 0 (oscillating wall) 45 • Reduced 100 R DNS 40 35 30 25 L + x × L + z 20 10 5 10 6 10 7 ours full 10/17

  16. Introduction Flow Unit for Drag Reduction Results Conclusions Wave parameters λ + x = 1256 30 5 -20 36 41 43 45 45 46 44 5 -20 -23 -23 -22 -17 -10 -2 0 30 0 20 23 8 0 0 0 4 15 38 41 44 46 45 36 6 -15 -18 4 2 0 10 1 38 46 -16 -21 4 31 42 45 47 -20 24 45 13 3 0 40 46 -15 -18 0 2 1 - 20 40 0 0 15 41 0 -8 -17 8 15 κ 1 - k 47 45 47 33 -16 -2 17 30 2 18 21 29 35 43 45 46 46 32 -7 -14 3 30 16 44 46 48 48 34 -14 21 10 30 33 40 0 0 45 46 47 40 8 1 -8 -10 13 24 20 40 0 31 1 1 21 34 37 41 45 45 47 39 31 18 10 0 3 -3 -6 -9 -9 -1 7 14 19 26 24 16 33 36 40 42 42 42 36 14 1 -7 1 24 28 20 20 2 0 32 36 37 38 37 36 26 1 -8 -1 19 29 29 24 16 34 36 35 33 22 5 -9 4 27 32 0 0 16 18 22 27 32 34 33 34 33 33 33 32 31 27 21 5 0 3 5 0 -6 -3 -7 -7 -9 -7 -9 -7 -6 -3 5 0 0 3 5 21 27 31 32 33 34 33 34 32 27 22 18 16 -3 -2 -1 0 1 2 3 ω ω 11/17

  17. Introduction Flow Unit for Drag Reduction Results Conclusions Drag reduction λ + x = 1256 100 R 50 40 30 20 Re τ 10 • ◦ 200 � 1000 0 △ 2000 � -10 ω + -0.2 -0.1 0 0.1 0.2 0.3 12/17

  18. Introduction Flow Unit for Drag Reduction Results Conclusions Input power λ + x = 1256 0 100 P in / P 0 Re τ 200 • ◦ 1000 � -50 2000 � △ -100 -150 ω + -200 -0.2 -0.1 0 0.1 0.2 0.3 13/17

  19. Introduction Flow Unit for Drag Reduction Results Conclusions Reynolds effect 100 R 40 55 20 50 45 0 ω + 49 40 −0.2 −0.1 0 0.1 0.2 0.3 35 100 R 36.5 R max ∼ Re − 0 . 22 30 Reduced 25 29.2 20 15 100 200 400 1000 2000 10000 Re τ 14/17

  20. Introduction Flow Unit for Drag Reduction Results Conclusions Reynolds effect 100 R 40 55 20 50 45 0 ω + 40 −0.2 −0.1 0 0.1 0.2 0.3 35 100 R R ∼ Re − 0 . 08 30 22 .4 25 19.7 20 Reduced 15 100 200 400 1000 2000 10000 Re τ 15/17

  21. Introduction Flow Unit for Drag Reduction Results Conclusions Reynolds effect 100 R 40 55 20 50 45 0 ω + 40 −0.2 −0.1 0 0.1 0.2 0.3 35 100 R R ∼ Re − 0 . 08 30 25 20 21. 7 20.5 DNS 15 100 200 400 1000 2000 10000 Re τ 15/17

  22. Introduction Flow Unit for Drag Reduction Results Conclusions “Conclusions” R ∼ Re − 0 . 22 τ 16/17

  23. Introduction Flow Unit for Drag Reduction Results Conclusions “Conclusions” ...or even better! R ∼ Re − 0 . 08 τ S increases with Re 16/17

  24. Introduction Flow Unit for Drag Reduction Results Conclusions A broader result Need for extensive parametric studies focusing on optimal parameters gives a limited view! 17/17

  25. Davide Gatti 1 , 2 , Maurizio Quadrio 1 Turbulent Drag Reduction at Moderate Reynolds Numbers via Spanwise Velocity Waves 1 POLITECNICO DI MILANO 2 CENTER OF SMART INTERFACES Technische Universit¨ at Darmstadt 17/17

  26. Box size L + L + z = L + x = 1000 ÷ 2000 x / 2 Criteria: • “Healthy” turbulence up to y d apart from wall z = 3 y + if L + L + x ≈ h + and d (Florez and Jim´ enez, PoF 2010) • At least one wavelength long L x = 2 π/κ x 17/17

  27. Simulation data T + sim = 12000 ÷ 24000 Simulation time: ∆ x + = ∆ z + = 10 ∆ y + < 4 Resolution: Grid points: 128 × Re τ / 2 × 64 192 × Re τ / 2 × 96 17/17

  28. Effects on wall skin friction Fixed wall 9 Dean 8 ◦ • Re τ = 200 � Re τ = 1000 7 � △ Re τ = 2000 C f × 10 3 6 5 4 3 0 2 4 6 8 10 12 × 10 6 L + x × L + z 17/17

  29. Effects on input power κ x = 0 -70 L + x 3746 -75 • ◦ 666 • ◦ 100 P in / P 0 1000 • ◦ 1326 -80 • ◦ 2000 -85 -90 85 90 95 100 105 110 115 120 T + 17/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend