skin friction drag reduction described via the
play

Skin-friction drag reduction described via the Anisotropic - PowerPoint PPT Presentation

Skin-friction drag reduction described via the Anisotropic Generalised Kolmogorov Equations Alessandro Chiarini 1 , Davide Gatti 2 , Maurizio Quadrio 1 European Drag Reduction and Flow Control Meeting, 26-29 March 2019, Bad Herrenalb, Germany 1


  1. Skin-friction drag reduction described via the Anisotropic Generalised Kolmogorov Equations Alessandro Chiarini 1 , Davide Gatti 2 , Maurizio Quadrio 1 European Drag Reduction and Flow Control Meeting, 26-29 March 2019, Bad Herrenalb, Germany 1 Politecnico di Milano, 2 Karlsruhe Institute of Technology-KIT 1

  2. How do DR techniques affect the production, transport and dissipation of turbulent stresses among scales and in space? 2

  3. Turbulent channel flow forced via spanwise oscillating walls vs Controlled channel Reference channel At Constant Power Input 3

  4. Constant Power Input: an alternative to CFR and CPG The input power is kept constant mean dissipation φ MKE TKE pumping power Π p turbulent dissipation ǫ production P control power Π c Gatti et al. JFM 2018 4

  5. Starting point: OW effect on the global energy fluxes Reference channel at Re τ = 200 φ = 0 . 589 MKE TKE Π p = 1 ǫ = 0 . 410 P = 0 . 411 Π c = 0 5

  6. Starting point: OW effect on the global energy fluxes Controlled channel via OW with A + = 4 . 5 and T + = 125 ∆ φ = +0 . 009 φ = 0 . 598 MKE TKE Π p = 1 ǫ = 0 . 499 ∆Π p = 0 ∆ ǫ = +0 . 089 P = 0 . 403 ∆ P = − 0 . 008 ∆Π c = +0 . 098 Π c = 0 . 098 5

  7. Starting point: OW effect on the global energy fluxes Controlled channel via OW with A + = 4 . 5 and T + = 125 ∆ φ = +0 . 009 φ = 0 . 598 MKE TKE Π p = 1 ǫ = 0 . 499 ∆Π p = 0 ∆ ǫ = +0 . 089 P = 0 . 403 ∆ P = − 0 . 008 ∆Π c = +0 . 098 Π c = 0 . 098 Global variations → detailed changes 5

  8. Anisotropic Generalised Kolmogorov Equations AGKE: Exact budget equation for � δ u i δ u j � δ u i = ( u i ( X + r / 2 , t ) − u i ( X − r / 2 , t )) k j i x 1 X x 2 u i ( X − r / 2) r j u i ( X + r / 2) r k r i X = ( x 1 + x 2 ) / 2 Dependent on: r = x 2 − x 1 6

  9. AGKE: extension of the Generalised Kolmogorov Equation to anisotropy GKE: Exact budget equation for the scale energy   � δ u δ u � � δ u δ v � � δ u δ w �   � δ u i δ u i � = tr � δ v δ v � � δ v δ w �  = � δ u δ u � + � δ v δ v � + � δ w δ w �  � δ w δ w � sym 7

  10. AGKE: extension of the Generalised Kolmogorov Equation to anisotropy GKE: Exact budget equation for the scale energy   � δ u δ u � � δ u δ v � � δ u δ w �   � δ u i δ u i � = tr � δ v δ v � � δ v δ w �  = � δ u δ u � + � δ v δ v � + � δ w δ w �  � δ w δ w � sym What if � δ u δ u �≫� δ v δ v � , � δ w δ w � ? The GKE does not account for anisotropy.. ..but the AGKE do! 7

  11. AGKE: interpretation Amount of turbulent stresses at location X and scale (up to) r r • � δ u i δ u j � ( X , r ) X JFM, in preparation Production, transport and dissipation of turbulent stresses • AGKE in both the Space of scales & Physical space 8

  12. AGKE ∂φ k , ij + ∂ψ k , ij = ξ ij ∂ r k ∂ X k 9

  13. AGKE ∂φ k , ij + ∂ψ k , ij = ξ ij ∂ r k ∂ X k − 2 ν ∂ φ k , ij = � δ U k δ u i δ u j � + � δ u k δ u i δ u j � ∂ r k � δ u i δ u j � � �� � � �� � � �� � mean transport turbulent transport viscous diffusion flux of � δ u i δ u j � throughout scales r 9

  14. AGKE ∂φ k , ij + ∂ψ k , ij = ξ ij ∂ r k ∂ X k + 1 ρ � δ p δ u i � δ kj + 1 − ν ∂ ψ k , ij = � U ∗ k δ u i δ u j � + � u ∗ k δ u i δ u j � ρ � δ p δ u j � δ ki ∂ X k � δ u i δ u j � 2 � �� � � �� � � �� � mean transport turbulent transport � �� � viscous diffusion pressure transport flux of � δ u i δ u j � in space X 9

  15. AGKE ∂φ k , ij + ∂ψ k , ij = ξ ij ∂ r k ∂ X k source/sink of � δ u i δ u j � at scale r and location X � ∂ U i � � ∂ U j � � ∂ U i � ∗ � ∂ U j � ξ ij = −� u ∗ −� u ∗ k δ u j � δ k δ u i � δ −� δ u k δ u j � −� δ u k δ u i � + ∂ x k ∂ x k ∂ x k ∂ x k � �� � production � � � � +1 δ p ∂δ u i + 1 δ p ∂δ u j − 4 ǫ ∗ ij ρ ∂ X j ρ ∂ X i � �� � � �� � dissipation 9 pressure strain

  16. AGKE ∂φ k , ij + ∂ψ k , ij = ξ ij ∂ r k ∂ X k − 2 ν ∂ φ k , ij = � δ U k δ u i δ u j � + � δ u k δ u i δ u j � ∂ r k � δ u i δ u j � � �� � � �� � � �� � mean transport turbulent transport viscous diffusion + 1 ρ � δ p δ u i � δ kj + 1 − ν ∂ ψ k , ij = � U ∗ k δ u i δ u j � + � u ∗ k δ u i δ u j � ρ � δ p δ u j � δ ki ∂ X k � δ u i δ u j � 2 � �� � � �� � � �� � mean transport turbulent transport � �� � viscous diffusion pressure transport � ∂ U i � � ∂ U j � � ∂ U i � ∗ � ∂ U j � ξ ij = −� u ∗ −� u ∗ k δ u j � δ k δ u i � δ −� δ u k δ u j � −� δ u k δ u i � + ∂ x k ∂ x k ∂ x k ∂ x k � �� � production � � � � +1 δ p ∂δ u i + 1 δ p ∂δ u j − 4 ǫ ∗ ij ρ ∂ X j ρ ∂ X i � �� � � �� � dissipation 9 pressure strain

  17. AGKE tailored to channel flow � δ u i δ u j � ( X , r ) →� δ u i δ u j � ( Y , r x , r y , r z ) y U ( y ) x z U ( y ) r z x 1 x 2 Y r y r x ∂φ k , ij + ∂ψ ij ∂ Y = ξ ij ∂ r k 10

  18. How do DR techniques affect the production, transport and dissipation of turbulent stresses among scales and in space? We investigate the changes of the AGKE terms 11

  19. Numerical Data • Two Direct Numerical Simulations (with and without wall oscillation) at CPI Re τ = 200 for the uncontrolled case Wall oscillation parameters: A + = 4 . 5, T + = 125 . 5 Quadrio & Ricco JFM 2004 • Six smaller Direct Numerical Simulations at CPI A + ∈ (0 , 30), T + ∈ (100 , 125) 12

  20. Source of � δ u δ u � in the r x = 0 space Ref OW r y ≤ 2Y r z x 2 r y y x 1 Y z 13

  21. Production of � δ u δ u � Ref OW r y ≤ 2Y r z x 2 r y y x 1 Y z 13

  22. Production of � δ u δ u � Ref OW Shift of P 11 , m (∆ Y + P m ∼ 3) 13

  23. Production of � δ u δ u � What if A + is incremented? 20 Y + P m 18 16 14 12 0 10 20 30 A + P m increases with A + (% DR ) ∆ Y + 13

  24. Fluxes of � δ u δ u � : φ k , 11 and ψ 11 Ref OW r y ≤ 2Y r z x 2 r y y x 1 Y z 13

  25. Fluxes of � δ u δ u � : φ k , 11 and ψ 11 Ref OW Y = r y / 2 + K : attached to the wall plane 13

  26. Fluxes of � δ u δ u � : φ k , 11 and ψ 11 Ref OW ∆ K + ∼ 3 13

  27. Fluxes of � δ u δ u � : φ k , 11 and ψ 11 What if A + is incremented? 30 25 K + 20 15 10 0 10 20 30 A + ∆ K + increases with A + (% DR ) 13

  28. Links with well-known results? Vertical shift ∆ y of the maximum of P � uu � Ref OW 0 . 4 P + � uu � , m ∆ y + ∼ 3 0 . 2 0 0 10 20 30 y + 13

  29. Links with well-known results? Vertical shift ∆ y of φ � uu � = 0 Ref 1 OW φ + 0 � uu � ∆ y + ∼ 3 − 1 0 20 40 y + 13

  30. Interpretation Single-point statistics Two-points statistics • Shift of � uu � m • Shift of � δ u δ u � m • Shift of P • Shift of P � uu � , m � δ u δ u � , m • Shift of φ � uu � = 0 • Shift of the attached to the wall plane OW → Virtual shift of the wall 13

  31. Conclusion AGKE terms in turbulent channel forced via spanwise oscillating walls For the streamwise normal stress.. • Shift of the production activity of � δ u δ u � towards larger wall-distances • Shift of the main transport of � δ u δ u � towards larger wall-distances • Both shifts increase with A 14

  32. Outlook: source of �− δ u δ v � Ref OW r z x 2 x 1 y Y z 15

  33. Thanks for your kind attention! For questions or suggestions: alessandro.chiarini@polimi.it davide.gatti@kit.edu maurizio.quadrio@polimi.it 16

  34. 17

  35. � δ u δ u � in the r x = 0 space Ref OW r y ≤ 2Y r z x 2 r y y x 1 Y z 18

  36. � δ u δ u � in the r x = 0 space Ref OW 18

  37. � δ u δ u � in the r x = 0 space What if A + is incremented? 30 Y + m 25 20 15 10 0 10 20 30 A + m increases with A + (% DR ) ∆ Y + 18

  38. � uu � Vertical shift ∆ y of φ = 0 8 Ref OW 6 � uu � + 4 2 ∆ y + ∼ 3 0 0 10 20 30 y + 19

  39. Source of �− δ u δ v � Ref OW r z x 2 x 1 y Y z 20

  40. Source of �− δ u δ v � = + Π 12 + ξ 12 P 12 ǫ 12 ���� ���� ���� ���� source production pressure strain dissipation P 12 > 0 in all the domain Π 12 < 0 in (almost) all the domain ǫ 12 is negligible in all the domain 20

  41. Source of �− δ u δ v � ∼ + Π 12 + ξ 12 P 12 ǫ 12 ���� ���� ���� ���� source production pressure strain dissipation 20

  42. Production of �− δ u δ v � Ref OW r z x 2 x 1 y Y z 20

  43. Production of �− δ u δ v � How does P max changes with A + ? 38 22 0 . 3 Y + P + r + max P m z 36 21 0 . 25 20 34 0 . 2 19 32 0 . 15 18 30 0 10 20 30 0 10 20 30 0 10 20 30 A + A + A + 20

  44. Pressure strain of �− δ u δ v � Ref OW r z x 2 x 1 y Y z 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend