turbulent drag reduction for a wall with a bump
play

Turbulent drag reduction for a wall with a bump Jacopo Banchetti - PowerPoint PPT Presentation

Turbulent drag reduction for a wall with a bump Jacopo Banchetti & Maurizio Quadrio, Politecnico di Milano EDRFCM 2019, March 2629, 2019 1 Outline Motivation DNS of bump fmow with StTW 2 Outline Motivation DNS of bump fmow with StTW


  1. Turbulent drag reduction for a wall with a bump Jacopo Banchetti & Maurizio Quadrio, Politecnico di Milano EDRFCM 2019, March 26–29, 2019 1

  2. Outline Motivation DNS of bump fmow with StTW 2

  3. Outline Motivation DNS of bump fmow with StTW 3

  4. The streamwise-traveling waves 4 5 20 40 0 1 - 36 41 43 45 45 46 44 5 -20 -20 -23 -23 -22 -17 -10 -2 20 40 10 0 0 20 23 8 0 4 15 38 41 44 46 45 36 6 -15 -18 0 0 2 38 46 -16 - -21 4 -10 31 42 45 47 -20 24 45 13 0 3 40 46 -15 -18 2 1 0 15 41 -8 -17 8 15 30 k x 47 30 45 47 33 -16 -2 17 -10 0 20 0 4 2 18 21 29 35 43 45 46 46 32 -7 -14 3 20 0 16 40 20 44 46 48 48 34 10 -14 21 30 33 40 0 45 46 47 40 8 1 -8 -10 13 24 0 31 1 21 34 37 41 45 45 47 39 31 18 10 3 -3 -6 -9 -9 -1 7 14 19 26 24 16 33 36 40 42 42 42 36 14 1 -7 1 24 28 20 10 0 32 36 37 38 37 36 26 1 -8 -1 19 29 29 24 16 34 36 35 33 22 5 -9 4 27 32 0 16 18 22 27 32 34 33 34 33 33 33 32 31 27 21 3 5 5 0 0 -6 -3 -9 -7 -7 -7 -9 -7 -6 -3 5 0 0 3 5 21 27 31 32 33 34 33 34 32 27 22 18 16 -3 -2 -1 0 1 2 3 ω

  5. The next steps Besides lacking a suitable actuator, of course! • Q1 How to interpret results? • Q2 Effect of Re ? Gatti & Quadrio, JFM 2016 5 • Q3 What about total drag?

  6. Q1: The energy box Gatti, Cimarelli, Hasegawa, Frohnapfel & Quadrio, JFM 2018 6 φ ℓ = 0 . 253 Π c = 0 . 098 (0 . 014) MKE TKE P ℓ = 0 . 649 ( − 0 . 112) ǫ = 0 . 454 (0 . 043) Π p = 0 . 902 ( − 0 . 098) −P ∆ = 0 . 292 ( − 0 . 058) φ ∆ = 0 . 292 ( − 0 . 058)

  7. Q2: effectiveness is constant with Re Gatti & Quadrio, JFM 2016 7

  8. Q3: What about the airplane total drag? Prelim results presented at last EDRFCM in Frascati • Transonic DLR-F6 transport aircraft • RANS, Spalart-Allmaras model • StTW accounted for via wall functions 8 • Re = 3 × 10 6 , M = 0 . 75

  9. Changes in friction AND pressure Friction drag reduces by 23%, as expected... 9

  10. Changes in friction AND pressure ... but total drag reduces by the same amount! 9

  11. Outline Motivation DNS of bump fmow with StTW 10

  12. Back to fundamentals: a low- Re , incompressible DNS study • Incompressible DNS of a channel with a small bump • Second-order FD, immersed boundary • With and without StTW 11 • Periodic + non-periodic domain • Re τ = 200, ( L x , L y , L z ) = ( 25 h , 3 . 2 h , 2 h ) , ( N x , N y , N z ) = ( 800 , 312 , 241 ) Z, w outflow Y, v inflow X, u periodic boundary condition

  13. Bump instead of a wing profjle Two (small) bump geometries, one inducing mild separation 12 0 . 2 z/h 0 . 1 0 0 2 4 6 8 10 12 x/h

  14. Friction coeffjcient (and a poll) 13 3 · 10 − 2 1 Ref StTW 0 . 8 2 0 . 6 C f ( x ) R ( x ) 1 0 . 4 0 . 2 0 120 0 0 2 2 4 4 6 6 8 8 10 10 12 x/h

  15. The mean velocity profjle (no bump) The maximum velocity shifts towards the actuated side and produces 4% 14 additional drag reduction on the unactuated side! 2 Ref StTW z/h 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 2 0 1 u/U b

  16. Pressure drag 15 · 10 − 2 0 . 5 0 ∆ C dp − 0 . 5 − 1 10 0 D p − 10 − 20 0 2 4 6 8 10 12 x/h

  17. Power budget 1.088 0.088 0.080 Periodic P tot 1 0.545 0.575 - P req - - Net - - Table 1: Power per unit area, bump wall with G 1 - 16 - Ref StTW P p StTW Expected P f Ref 1 0.545 Non-Periodic 1 ∆% ∆% − 45 . 5 % − 49 . 6 % − 45 . 5 % 0 . 504 − 10 . 3 % 0 % − 45 . 5 % − 46 . 4 % − 42 . 2 % 34 . 1 % P tot 31 . 2 % P tot 31 . 3 % P tot 11 . 4 % P tot 15 . 3 % P tot 11 % P tot

  18. TKE (left) and TKE production (right) 17 · 10 − 2 · 10 − 2 1 2 . 2 1 2 . 2 2 2 z/h z/h 0 . 5 0 . 5 1 . 8 1 . 8 0 0 1 . 6 1 1 1 . 6 1 . 4 z/h z/h 1 . 4 0 . 5 0 . 5 1 . 2 1 . 2 0 0 1 1 1 1 0 . 8 z/h z/h 0 . 5 0 . 5 0 . 8 0 . 6 0 . 4 0 . 6 0 0 1 1 0 . 2 0 . 4 z/h z/h 0 0 . 5 0 . 5 0 . 2 − 0 . 2 0 0 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 x/h x/h

  19. The separation bubble 18 0 . 1 1 0 . 8 z/h 0 . 6 0 0 . 1 0 . 4 z/h 0 . 2 0 0 4 . 5 4 . 6 4 . 7 4 . 8 4 . 9 5 . 1 5 . 2 5 . 3 5 . 4 5 . 5 5 x/h

  20. Conclusions • Interaction between friction drag reduction and overall drag • Benefjts of skin-friction drag reduction techniques may be underestimated • Compressible DNS may reveal larger effects 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend