transverse stability of periodic waves in water wave
play

Transverse stability of periodic waves in water-wave models Mariana - PowerPoint PPT Presentation

Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit e Bourgogne Franche-Comt e, France ICERM, April 28, 2017 Water-wave problem gravity/gravity-capillary waves


  1. Transverse stability of periodic waves in water-wave models Mariana Haragus Institut FEMTO-ST and LMB Universit´ e Bourgogne Franche-Comt´ e, France ICERM, April 28, 2017

  2. Water-wave problem gravity/gravity-capillary waves � three-dimensional inviscid fluid layer � constant density � gravity/gravity and surface tension � irrotational flow

  3. Water-wave problem y = h + η ( x , z , t ) (free surface) y x z y = 0 (flat bottom) Domain D η = { ( x , y , z ) : x , z ∈ R , y ∈ (0 , h + η ( x , z , t )) } � depth at rest h

  4. Euler equations Laplace’s equation φ xx + φ yy + φ zz = 0 D η in boundary conditions φ = 0 y = 0 on y η = φ y − η x φ x − η z φ y = h + η on t z − 1 g η + σ 2( φ 2 x + φ 2 y + φ 2 φ = z ) − ρ K y = h + η on t � velocity potential φ ; free surface h + η � � � � � mean curvature K = √ √ η x + η z 1+ η 2 x + η 2 1+ η 2 x + η 2 z z x z � parameters ρ , g , σ , h

  5. Euler equations moving coordinate system, speed − dimensionless variables � characteristic length h � characteristic velocity parameters � inverse square of the Froude number α = gh 2 σ � Weber number β = ρ h 2

  6. Euler equations φ xx + φ yy + φ zz = 0 0 < y < 1 + η fo r φ y = 0 y = 0 on φ y = η t + η x + η x φ x + η z φ y = 1 + η � � on z x + 1 φ 2 x + φ 2 y + φ 2 t + φ + αη − β K = 0 y = 1 + η φ 2 on z

  7. Euler equations φ xx + φ yy + φ zz = 0 0 < y < 1 + η fo r φ y = 0 y = 0 on φ y = η t + η x + η x φ x + η z φ y = 1 + η � � on z x + 1 φ 2 x + φ 2 y + φ 2 t + φ + αη − β K = 0 y = 1 + η φ 2 on z difficulties � variable domain (free surface) � nonlinear boundary conditions very rich dynamics � symmetries, Hamiltonian structures � many particular solutions

  8. Focus on . . . traveling periodic 2D waves transverse stability/instability analytical results long-wave models

  9. Two-dimensional periodic waves � exist in different parameter regimes α 1 1 β 3

  10. Two-dimensional periodic waves � transverse (in)stability α 1 1 β 3

  11. Large surface tension transverse linear instability � longitudinal co-periodic perturbations � transverse periodic perturbations Euler equations [H., 2015]

  12. Transverse instability problem Transverse spatial dynamics z = t + F ( U ) U DU U ( x , z , t ) , D linear operator, F nonlinear map � � a periodic wave U ∗ ( x ) is an equilibrium z x

  13. Transverse linear instability Transverse spatial dynamics z = t + F ( U ) U DU U ∗ ( x ) is transversely linearly unstable if the linearized system F ′ ( U ∗ ) z = t + L U , L = U DU t ) = e λ possesses a solution of the form U ( x , z , V λ ( x , z ) t with λ ∈ C , Re λ > 0 , V λ bounded function.

  14. Hypotheses 1 the system z = t + F ( U ) is reversible/Hamiltonian ; U DU F ′ ( U ∗ ) possesses a pair of 2 the linear operator L = simple purely imaginary eigenvalues ± i κ ∗ ; 3 the operators D and L are closed in X with D ( L ) ⊂ D ( D );

  15. Main result Theorem 1 For any λ ∈ R sufficiently small, the linearized system z = t + L U U DU t ) = e λ possesses a solution of the form U ( · , V λ ( · , z ) z , t with V λ ( · , z ) ∈ D ( L ) a periodic function in z . U ∗ is transversely linearly unstable . 2 [Godey, 2016; see also Rousset & Tzvetkov, 2010]

  16. Euler equations Hamiltonian formulation of the 3D problem: z = t + F ( U ) U DU � boundary conditions y = b ( U ) t + g ( U ) y = 0 , 1 φ on ( e.g. [Groves, H., Sun, 2002])

  17. Periodic waves β > 1 3 , α = 1 + ǫ , ǫ small model: Kadomtsev-Petviashvili-I equation � instability x u + u + 1 ∂ x ∂ t u = ∂ x ∂ x ( ∂ 2 2 u 2 ) − ∂ 2 y u [H.; Johnson & Zumbrun; Hakkaev, Stanislavova & Stefanov, . . . ]

  18. Periodic waves β > 1 3 , α = 1 + ǫ , ǫ small model: Kadomtsev-Petviashvili-I equation � instability x u + u + 1 ∂ x ∂ t u = ∂ x ∂ x ( ∂ 2 2 u 2 ) − ∂ 2 y u [H.; Johnson & Zumbrun; Hakkaev, Stanislavova & Stefanov, . . . ] The Euler equations possess a one-parameter family of symmetric periodic waves a ( ε 1 / 2 ϕ ǫ, a ( x ) = ε 1 / 2 a ( ε 1 / 2 η ǫ, a ( x ) = ε x , ε ) , x , ε ) p q a ( ξ, 0) = ∂ ξ a ( ξ, 0) , a ( ξ, 0) satisfies the Korteweg de p q p Vries equation [Kirchg¨ assner, 1989]

  19. Linearized system linearized system (rescaled) z = t + DF ε ( u a ) U D ε U U � boundary conditions φ y = Db ε ( u a ) U t + Dg ε ( u a ) U y = 0 , 1 on

  20. Linearized system linearized system (rescaled) z = t + DF ε ( u a ) U D ε U U � boundary conditions φ y = Db ε ( u a ) U t + Dg ε ( u a ) U y = 0 , 1 on linear operator L ε := DF ε ( u a ) � boundary conditions φ y = Dg ε ( u a ) U y = 0 , 1 on � space of symmetric functions ( x → − x ) X s = H 1 e (0 , 2 π ) × L 2 e (0 , 2 π ) × H 1 o ((0 , 2 π ) × (0 , 1)) × L 2 o ((0 , 2 π ) × (0 , 1))

  21. Linear operator L ε     ω     η η g 1   β         L ε = L 0 ε + L 1  ω  − ε k 2  ω   g 2    a βη xx + (1 + ǫ ) η − k a φ x | y =1 L 0   , L 1     = =   ε ε   ε       φ φ G 1        ξ  ξ − ε k 2 ξ G 2 a φ xx − φ yy � � 1 � (1 + ε k 2 a η 2 ax ) 1 / 2 1 ω = ω + y φ ay ξ dy − g 1 β 1 + εη a β 0 � � 1 εφ 2 ε 3 k 2 a y 2 η 2 ε 3 k 2 a y 2 η ax φ 2 ε 3 k 2 a y 2 η 2 ax φ 2 ay η ay η x ay η φ ay φ y ax φ ay φ y ε k 2 g 2 = a φ ax φ x − (1 + εη a ) 2 + (1 + εη a ) 3 − − + (1 + εη a ) 2 (1 + εη a ) 2 (1 + εη a ) 3 0 � � � ε 2 k 2 a y 2 φ 2 ε 3 k 2 a y 2 η ax φ 2 2 ε 2 k 2 a y 2 η ax φ ay φ y ay η x ay η ε k 2 a y φ ay φ x + ε k 2 + a y φ ax φ y − − + dy (1 + εη a ) 2 1 + εη a 1 + εη a x � � η x + ε k 2 a βη xx − ε k 2 a β (1 + ε 3 k 2 a η 2 ax ) 3 / 2 x � � 1 � (1 + ε 3 k 2 a η 2 ax ) 1 / 2 εη a ξ 1 G 1 = − + ω + y φ ay ξ dy y φ ay 1 + εη a β (1 + εη a ) 1 + εη a 0 � � εη a φ εφ a η − ε 2 k 2 G 2 = + a [ η a φ x + φ ax η − y φ ay η x − y η ax φ y ] x (1 + η a ) 2 (1 + εη a ) yy � � ε 2 y 2 η 2 ε y 2 η 2 2 ε y 2 η ax φ ay η x ax φ ay η ax φ y + ε 2 k 2 y η ax φ x + y φ ax η x + − − a (1 + εη a ) 2 1 + εη a 1 + εη a y

  22. Check hypotheses . . . Main difficulty: spectrum of L ε . . . operator with compact resolvent − → pure point spectrum spectral analysis | λ | ≥ λ ∗ | λ | ≤ λ ∗ | λ | ≤ εℓ ∗

  23. Key step Reduction to a scalar operator B ε,ℓ in L 2 o (0 , 2 π ) ξ = ε ˜ � scaling λ = εℓ, ω = ε ˜ ω, ξ � decomposition φ ( x , y ) = φ 1 ( x ) + φ 2 ( x , y ) λ = εℓ eigenvalue iff B ε,ℓ φ 1 = 0 � � � β − 1 k 4 k 2 a φ 1 xx + ℓ 2 (1 + ǫ ) φ 1 − 3 k 2 B ε,ℓ φ 1 = a φ 1 xxxx − a ( P a φ 1 x ) x + . . . 3

  24. . . . . . . . . . � 1 B ǫ ( η, Φ) = − ǫη x + B ǫ 0 + B ǫ 1 , β 1 x ) 1 / 2 ( η † + i k η ) − y Φ ⋆ ω = y ξ dy , (1 + ǫ 3 η ⋆ 2 1 + ǫη ⋆ 0 ξ = (1 + ǫη ⋆ )(Φ † + i k Φ) − ǫ y Φ ⋆ y ( η † + i k η ) � ǫ Φ ⋆ ǫη ⋆ Φ y � y η � B ǫ = 1 + ǫη ⋆ + , � 0 (1 + ǫη ⋆ ) 2 � y =1 ǫ 4 η ⋆ 2 x Φ ⋆ ǫ 3 η ⋆ 2 y η x Φ y (1 + ǫ ) 1 1 B ǫ ǫ 2 η ⋆ x Φ x + ǫ 2 Φ ⋆ βη xx − i k β ( h ǫ 1 + i k η ) = h ǫ = x η x + (1 + ǫη ⋆ ) 2 − 1 + ǫη ⋆ − η − ǫ 2 Φ x | y =1 − 1 2 ǫ 2 ǫ 1 1 ǫ 2 Φ yy − i k ( H ǫ 1 + i k Φ) = H ǫ − Φ xx − 2 , ǫ Φ yy + q 2 ˆ − ˆ Φ = ǫ 2 ( ˆ H ǫ 2 + i k ˆ H ǫ 1 ) , 0 < y < 1 2 = ω † − g ǫ h ǫ 2 , ˆ Φ y = 0 , y = 0 2 = ξ † − G ǫ H ǫ 2 ǫµ 2 ˆ ǫ 3 i µ (ˆ h ǫ h ǫ 2 + i k β ˆ Φ 1 ) ω B ǫ B ǫ h ǫ ˆ + ˆ 0 + ˆ Φ y − 1 + ǫ + β q 2 = − 1 , y = 1 1 = − i k η 1 + ǫ + β q 2 β � 1 1 y Φ ⋆ y [ − ǫ y Φ ⋆ y ( i k η + η † ) + (1 + ǫη ⋆ )( i k Φ + Φ † )] dy = − β (1 + ǫη ⋆ ) 0  (1 + ǫ + β q 2 ) cosh q (1 − ζ ) + ( ǫµ 2 / q ) cosh qy � �   η †  1  q 2 − (1 + ǫ + β q 2 ) q tanh q − ǫ  cosh q + x ) 1 / 2 − 1 i k η + x ) 1 / 2 ,  (1 + ǫ 3 η ⋆ 2 (1 + ǫ 3 η ⋆ 2 G ( y , ζ ) =   (1 + ǫ + β q 2 ) cosh q (1 − y ) + ( ǫµ 2 / q )  H ǫ cosh q ζ  1 = ξ − i k Φ   q 2 − (1 + ǫ + β q 2 ) q tanh q − cosh q = (1 + ǫη ⋆ )Φ † + i k ǫη ⋆ Φ − ǫ y Φ ⋆ y ( η † + i k η ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend