transmission phase of a quantum dot and statistical
play

Transmission phase of a quantum dot and statistical fluctuations of - PowerPoint PPT Presentation

Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes Rodolfo A. Jalabert, Guillaume Weick, Hans A. Weidenm uller Dietmar Weinmann Rafael A. Molina, Philippe Jacquod Luchon Superbagn` eres, March 2015


  1. Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes Rodolfo A. Jalabert, Guillaume Weick, Hans A. Weidenm¨ uller Dietmar Weinmann Rafael A. Molina, Philippe Jacquod Luchon Superbagn` eres, March 2015

  2. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Transmission phase Quantum scatterer connected to monochannel leads e ikx t e ikx r e − ikx V = 2 e 2 G = I h | t | 2 Transmission amplitude t = | t | e i α α transmission phase

  3. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions AB interferometer containing a quantum dot ∼ 200 electrons continuous phase evolution in resonances (Friedel sum rule) ∝ δα abrupt drops of π in valleys Schuster et al. , Nature ’97 subsequent peaks in phase

  4. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Crossover mesoscopic ↔ universal “Mesoscopic”: N � 10; irregular phase evolution Avinum-Kalish et al. , Nature ’05 “Universal”: N > 14; subsequent peaks in phase

  5. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Between resonances: Two-level model ǫ 2 γ r γ l 1 γ r γ l 2 γ r γ l 2 2 1 2 t ( ǫ ) ∼ ǫ − ǫ 1 + i Γ 1 / 2 + ǫ − ǫ 2 + i Γ 2 / 2 γ r γ l 1 1 n | 2 + | γ r ǫ n = ǫ ( 0 ) Γ n = | γ l n | 2 ǫ 1 − V g n γ l 1 γ r 1 = − γ l 2 γ r γ l 1 γ r 1 = γ l 2 γ r opposite parity same parity 2 2 2 π 2 π π π α α 0 0 1 1 | t | 2 | t | 2 0 . 5 0 . 5 0 0 V g V g | t | > 0 ↔ smooth phase increase | t | = 0 ↔ phase jump [Lee PRL ’99; Taniguchi & B¨ uttiker PRB ’99, Levy-Yeyati & B¨ uttiker PRB ’00, Aharony et al. PRB ’02]

  6. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Continuous evolution of t γ l 1 γ r 1 = − γ l 2 γ r γ l 1 γ r 1 = γ l 2 γ r opposite parity same parity 2 2 2 π 2 π π π α α 0 0 1 1 | t | 2 | t | 2 0 . 5 0 . 5 0 0 V g V g 1 1 0 . 5 0 . 5 Im t Im t 0 0 − 0 . 5 − 0 . 5 − 1 − 1 − 1 − 0 . 5 0 0 . 5 1 − 1 − 0 . 5 0 0 . 5 1 Re t Re t

  7. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Parity rule ǫ n D n = γ l n γ r n γ l n + 1 γ r n + 1 sgn ( γ l n γ r n ) = ± sgn ( γ l n + 1 γ r n + 1 ) → D n ≷ 0 γ r γ l n n D n < 0 D n > 0 → no transmission zero → | t | = 0 no phase lapse phase lapse [Lee PRL ’99; Taniguchi & B¨ uttiker PRB ’99, Levy-Yeyati & B¨ uttiker PRB ’00, Aharony et al. PRB ’02] Disordered dots: P ( D n < 0 ) = 1 / 2 � irregular phase evolution Experiment: P ( D n < 0 ) = 0 � correlations between γ n and γ n + 1 ?

  8. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Wave-function correlations in chaotic dots y � W γ l ( r ) d y Φ l ( r ) ( y ) ψ n ( x l ( r ) , y ) ∼ ψ n ( x l ( r ) , 0 ) W ∝ n x 0 D n = γ l n γ r n γ l n + 1 γ r L n + 1 V E F = ψ n ( x l , 0 ) ψ n ( x r , 0 ) ψ n + 1 ( x l , 0 ) ψ n + 1 ( x r , 0 ) Random wave model: [M.V. Berry, J. Phys. A ’77] V g N ( r ) = 1 � ψ RWM cos [ k j r + δ j ] n N j = 1 E n = � 2 k 2 random δ j 2 m � randomly oriented k j with | k j | = k n n Correlations over a distance L = x r − x l � ψ n ( r ) ψ n ( r ′ ) � ≃ 1 A J 0 ( k | r − r ′ | ) � � D n � ∼ J 0 ( k n L ) J 0 ( k n + 1 L )

  9. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Universal behavior in the semiclassical limit 1 0 . 5 J 0 ( kL ) � D n � ∼ J 0 ( k n L ) J 0 ( k n + 1 L ) ∆ kL = k n + 1 L − k n L ≃ π 0 kL L ∆ k 2 π − 0 . 5 0 5 10 15 20 25 kL Average-based probability of having no phase lapse ( � D n � < 0) P ( � D n � < 0 ) ∼ 1 kL Tendency towards the universal regime at large kL R.A. Molina, R.A. Jalabert, DW, Ph. Jacquod, PRL 108 , 076803 (2012)

  10. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Numerics for the transmission amplitude 1 | t | 0 . 5 0 86 88 90 92 94 kL y 1 W x 0 . 5 L V E F Im[ t ] V g 0 − 0 . 5 circles ↔ Breit-Wigner peaks − 1 − 1 − 0 . 5 0 0 . 5 1 Re[ t ]

  11. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Counting zeros and resonances some long universal sequences kL 1 0 20 30 40 50 | t | 2 0 . 5 100 0 2 π 75 π α N r 0 N z 50 0 . 034 0 . 0345 0 . 035 V g α ( − ) /π 25 c 0 . 2 ∆ N r − ∆ N z 0 0 . 1 ∆ N r − 0 . 005 0 0 . 005 0 . 01 0 . 015 0 . 02 V g 0 25 50 75 100 “universal” regime at very large kL kL

  12. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Are averaged correlations sufficient? Conclusions were drawn from the sign of the average � D n � = � γ l n γ r n γ l n + 1 γ r n + 1 � and assuming narrow leads γ l / r ∼ ψ n ( x l / r , 0 ) n Questions: What happens in the case of wider leads? Do statistical fluctuations of the γ l / r change the results? n

  13. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Gaussian fluctuations of the partial-width amplitudes Dots with chaotic classical dynamics � Gaussian distribution of ψ n [Voros ’76, Berry ’77, Srednicki ’96] � W γ l ( r ) d y Φ l ( r ) ( y ) ψ n ( x l ( r ) , y ) ∝ n 0 � Gaussian distribution of the PWAs γ l / r with joint density n � − ( γ l n ) 2 +( γ r n ) 2 − 2 ρ n γ l n γ r � p ( γ l n , γ r √ 1 n ) = n exp n 2 σ 2 n ( 1 − ρ 2 2 πσ 2 1 − ρ 2 n ) n Variance and correlator with LR symmetry: σ 2 1 n = � γ l n γ l n � = � γ r n γ r n � ρ n = n � γ l n γ r n � σ 2 � Probability for positive parity n > 0 ) = 1 2 + 1 P ( γ l n γ r π arcsin ( ρ n )

  14. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Probability for no phase lapse P ( D n < 0 ) = P ( γ l n γ r � 1 − P ( γ l n + 1 γ r � + P ( γ l n + 1 γ r � 1 − P ( γ l n γ r � n > 0 ) n + 1 > 0 ) n + 1 > 0 ) n > 0 ) With mean wave-number spacing ∆ k n = π/ k n L 2 : f ( k ) = 1 4 − 1 π 2 arcsin 2 � P ( D n < 0 ) ≃ 2 f ( k n ) + ∆ k n f ′ ( k n ) � ρ ( k ) with 0 . 5 P ( D n < 0) 0 . 4 0 . 3 1 0 . 5 ρ n 0 − 0 . 5 � 2 � L L W W − 1 0 25 50 75 100 125 150 k n L

  15. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Numerics for P ( D n < 0 ) averaging over 14 cavities 0 . 5 P ( D n < 0) 0 . 4 0 . 3 40 60 80 100 k n L Blue: P ( D n < 0 ) ; smoothing k n interval of δ/ L with δ = π/ 4 and π Red: from the statistical model; same smoothing

  16. Experiments Parity rule Mean wave-function correlations Fluctuations Conclusions Conclusions Wave-function correlations: probability for non-universal evolution ∼ 1 / kL in chaotic dots � Tendency towards universal behavior at large N Gaussian fluctuations of partial-width amplitudes � Reduced tendency towards universal behavior Numerics for ballistic cavities � Intermediate tendency towards universal behavior Outlook: More realistic dot models? Beyond Gaussian fluctuations? Correlations n ↔ n + 1? R.A. Molina et al. , PRL 108 , 076803 (2012); PRB 88 , 045419 (2013) R.A. Jalabert et al. , PRE 89 , 052911 (2014)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend