far from equilibrium and time dependent phenomena
play

Far from equilibrium and time-dependent phenomena for electron - PowerPoint PPT Presentation

QIMP11, May 29 th June 10 th , 2011, Dresden PRSENTATION Far from equilibrium and time-dependent phenomena for electron transport in quantum dots Renaud Leturcq IEMN CNRS, Department ISEN, Villeneuve d'Ascq, France Outline


  1. QIMP11, May 29 th – June 10 th , 2011, Dresden PRÉSENTATION Far from equilibrium and time-dependent phenomena for electron transport in quantum dots Renaud Leturcq IEMN – CNRS, Department ISEN, Villeneuve d'Ascq, France

  2. Outline Introduction Part I: Single electron transport in quantum dots Electron and spin in quantum dots Time-resolved single electron detection Single electron manipulation Interaction with photons and phonons Part II: Kondo effect in quantum dots

  3. Introduction

  4. Challenges for quantum electronic transport • Low-frequency linear transport in non interacting systems is well understood G = e 2 h ∑ T n – Landauer-Büttiker theory n • Understanding the experiments requires to go beyond! – non-equilibrium effects (large bias voltage, current noise) – role of electron-electron interactions – interaction with the environment ⇒ finite coherence time – high-frequency response (adiabatic or non-adiabatic regime) – role of the electron spin • Quantum dots as an “ideal” playground to provide answers

  5. Transport in quantum dots quantum source drain dot  S gate  D  S  D QD source drain k B T E C  tunnel barriers • Small island k B T ≪ E C – large capacitance C charging energy E C = e 2 / C transport through a single atomic level – quantum confinement level spacing Δ ~ ħ 2 /( m * r 2 ) trapped electron = quantum impurity connected to Fermi leads

  6. Fabrication of semiconductor quantum dots • Most successful up to now: GaAs heterostructures R. Hanson et al. , Rev. Mod. Phys. 79 , 1217 (2007) Most of the demonstrative experiments on quantum dots were performed on this system.

  7. Fabrication of semiconductor quantum dots • Most successful up to now: GaAs heterostructures – extensive tuning of parameters • number of electrons N quantum source drain dot • confinement potential Δ  S  D • coupling to the leads Γ S , Γ D • bias voltage V SD eV SD • What is difficult to achieve with GaAs heterostructures? k B T E C – change the intrinsic electronic properties ( m* , g -factor,...) – coupling with other materials (superconductors, ferromagnetic)  – new geometries (interaction with motion) – optically active quantum dots

  8. Fabrication of semiconductor quantum dots • Necessity of tuning the material properties – change the intrinsic electronic properties 2 Δ≈ ℏ • effective mass  broader range of level spacing ∗ r 2 m • spin-orbit interaction (InAs, InSb: strong SOI) • zero nuclear spin (Si, C)  long spin coherence time – coupling with other materials • superconductors • ferromagnetic materials – new geometries • suspended nanostructures (nanowire, nanotubes) • heterogeneous integration – optically active quantum dots (see lecture A. Imamoglu)

  9. Fabrication of semiconductor quantum dots • Carbon-based nanostructures – carbon nanotubes, fullerene M. Bockrath et al. , Science 275 , 1922 (1997) H. Park et al. , Nature 407 , 57 (2000) – graphene L. A. Ponomarenko et al. , Science 320 , 356 (2008) • Semiconductor nanowire – InP, Si, InAs, Ge, InSb S. De Franceschi et al. , Appl. Phys Lett. 83 , 244 (2003) Z. Zhong et al. , Nano Lett. 5 , 1143 (2003) M. T. Björk et al. , Nano Lett. 4 , 1621 (2004) Y. Hu et al. , Nature Nanotechnol. 2 , 622 (2007) H. A. Nilsson et al. , Nano Lett. 9 , 3151 (2009)

  10. Take-away message (1) High tunability of semiconductor quantum dots for transport through quantum impurities electronic properties material properties interaction with the environment next: what can we probe in transport experiments?

  11. Part I Single electron transport in quantum dots 1. Transport mechanisms in quantum dots 2. Time-resolved single electron detection 3. Single electron manipulation 4. Interaction with photons 5. Interaction with phonons

  12. Single electron transistor (SET) review: Single Charge Tunneling , ed. Graber & Devoret, Plenum Press (1992) gate  S  D − Ne = Q g  Q L  Q R SET source drain C = C L  C R  C g V g = Q L − Q g = Q R − Q g tunnel barriers C L C g C R C g Ne ≡ 2 2 2 E cl  N ,V g = Q L  Q R  Q g I 2 C L 2 C R 2 C g C G + + -V /2 + = = 2 +V /2 ≈ N e − C g V g  = V G 2 C

  13. Single electron transistor (SET) gate review: Single Charge Tunneling , ed. Graber & Devoret, Plenum Press (1992)  S  D E cl ( N , V G ) SET source drain tunnel barriers N -2 N -1 N N +2 N +3 N +1 Ne ≡ V G  E C = e 2 /C I C G + + -V /2 + = = +V /2 = current at low bias voltage I V G energy conservation  E cl ( N , V g ) = E cl ( N +1, V g ) 2 E cl  N ,V g ≈ N e − C g V g  2 C V G

  14. Transport in quantum dots k B T ≪ E C quantum quantum source drain source drain dot dot  S  D T = 50 mK N-1 G SD (10 -3 e 2 /h) E C E C (+ Δ ) N k B T k B T E C N+1   V PG (mV)

  15. High bias spectroscopy E C • Charge stability diagram (SET) V SD N-1 ↔ N ↔ N+1 N-1 ↔ N N ↔ N+1 E C N-1 N N+1 0 V G + E C I 0 -

  16. High bias spectroscopy • Charge stability diagram (SET) V SD N-1 N N+1 0 V G dI/dV

  17. High bias spectroscopy • Charge stability diagram (QD): spin filling N even V SD E N-1 N N+1 0 V G DOS dI/dV

  18. High bias spectroscopy • N ↔ N+1 excited states E C E C V SD N-1 N N+1 0 E C V G dI/dV

  19. High bias spectroscopy • Constant interaction model: E C independent of N

  20. High bias spectroscopy • Spectroscopy of an InAs nanowire QD GL GC S D -20 GR T = 100 mK -10 GL GC GR V SD (mV) E C Δ E C +Δ S D 0 N +1 N +2 E C ≈  ≈ 6 meV N even 10 gives a QD radius of 20 nm 20 -0.04 -0.02 0 V g ates

  21. Spin spectroscopy • At high magnetic field: splitting of the degenerate spin states → can be used as a spin filter ∗  B B  E Z = g |g*| = 5.5, due to quantum confinement (bulk InAs, | g*| = 15) see also: R. Hanson et al. , Phys. Rev. Lett. 91 , 196802 (2003)

  22. Signature of spin-orbit interaction • Spin-orbit Hamiltonien: coupling of the spin and orbital 2  =− B ⋅ B eff H SO =− B ⋅  degrees of freedom p × E 2 m c • Mixing of spin states in InAs quantum dots C. Fasth et al. , PRL 98 , 266801 (2007) A. Pfund et al. ,PRB 76 , 161308(R) (2007) T - (2,0) 2 electrons states T 0 (2,0) T - g*µ B B T T 0  ST T + (2,0) T + | g* |= 7 S  SO = 0.2 meV S(2,0)

  23. Single electron transport mechanisms • Sequential tunneling model – master equation approach Beenakker, Phys. Rev. B 44 , 1646 (1991) d dt ∣ p ,t 〉 =−̂ L ∣ p ( t ) 〉 p n = probability to find the system in a state n L mn =δ n, m γ n −Γ m ← n γ n = ∑ Γ m ← n m ≠ n  n = transition rate from state n to state m

  24. Single electron transport mechanisms • Higher order processes: – elastic and inelastic cotunneling S. de Franceschi et al. , PRL 86, 878 (2001)

  25. Take-away message (2) Transport experiment can probe the quantum structure of the quantum dot electron and spin states... … assuming the constant interaction model ! transport mechanism via sequential co-tunneling next: can we access the transport time-scales?

  26. Time scales for single electron transport time-resolved detection (I.2) pulsed gate experiments (I.3) energy time frequency 1 s 1 Hz 4 feV 0.5 nK • Inverse tunneling rates 1/ Γ S , 1/ Γ D = 10 ps – infinity source drain quantum dot  S 1 ms 1 kHz 4 peV 0.5 μK – time scale for a trapped microwave experiments (I.4)  D electron to escape ES  d GS • Charge or spin decay time k B T 1 μs 1 MHz 4 neV 0.5 mK 1/ Γ d = few ns – 1 second E C – coherent manipulation 1 ns 1 GHz 0.5 K 4 μeV  • h / E C , h / Δ = 1 – 100 ps – non-adiabatic transistion 1 ps 1 THz 4 meV 500 K

  27. 2. Time-resolved single electron detection shot noise: S I = 2 eI (Schottky, 1918) conductor A ? time time

  28. Single charge detection with a quantum point contact gate source drain gate dot source drain gate I QPC working point V gates M. Field et al. , PRL 70, 1311 (1993)

  29. Time-resolved single electron detection • Thermal fluctuations between leads and dot W. Lu et al. , Nature 423 , 422 (2003) R. Schleser et al. , APL 85, 2005 (2004) L. Vandersypen et al. , APL 85 , 4394 (2004) source quantum drain dot  S  D k B T R. Scheser et al. , APL 85 , 2005 (2004)

  30. Time-resolved detection of single electron transport • Large bias voltage ⇒ directional flow S. Gustavsson, RL et al. , PRL 96, 076605 (2006) N quantum source drain dot  S N+1  D k B T current time

  31. Histograms of current fluctuations S. Gustavsson, RL et al. , PRL 96, 076605 (2006) • Poisson distribution for • Sub-Poisson distribution asymmetric coupling for symmetric coupling Theory: Hershfield et al., PRB 47, 1967 (1993) Bagrets & Nazarov, PRB 67, 085316 (2003)

  32. Histograms of current fluctuations • Asymmetric coupling • Symmetric coupling – statistics dominated by the – Coulomb blockade thicker barrier “orders” the electrons quantum quantum source drain source drain dot dot  S  S  D  D k B T k B T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend