towards a montagovian account of dynamics
play

Towards a Montagovian Account of Dynamics Philippe de Groote LORIA - PowerPoint PPT Presentation

1 Montagovian Dynamics Towards a Montagovian Account of Dynamics Philippe de Groote LORIA & Inria-Lorraine 2 Montagovian Dynamics Introduction An old problem: A man enters the room. He smiles. [[ A man enters the room ]] = x. man (


  1. 1 Montagovian Dynamics Towards a Montagovian Account of Dynamics Philippe de Groote LORIA & Inria-Lorraine

  2. 2 Montagovian Dynamics Introduction An old problem: A man enters the room. He smiles. [[ A man enters the room ]] = ∃ x. man ( x ) ∧ enters the room ( x ). x is bound. [[ He smiles ]] = smiles ( x ). x is free. How can we get from these: [[ A man enters the room. He smiles ]] = ∃ x. man ( x ) ∧ enters the room ( x ) ∧ smiles ( x ). A well known solution: DRT. • The reference markers of DRT act as existential quantifiers. • Nevertheless, from a technical point of view, they must be considered as free variables.

  3. 3 Montagovian Dynamics Expressing propositions in context “The key idea behind (...) Discourse Representation Theory is that each new sentence of a discourse is interpreted in the context provided by the sentences preceding it.” van Eijck and Kamp. Representing Discourse in Context. In Handbook of Logic and Language . Elsevier, 1997. We go two steps further: • We will interpret a sentence according to both its left and right contexts. • These two kinds of contexts will be abstracted over the meaning of the sentences.

  4. 4 Montagovian Dynamics Typing the left and the right contexts Montague semantics is based on Church’s simple type theory, which provides a full hierarchy of functional types built upon two atomic types: • ι , the type of individuals (a.k.a. entities). • o , the type of propositions (a.k.a. truth values). We add a third atomic type, γ , which stands for the type of the left contexts. What about the type of the right contexts? left context right context ↓ � �� � � �� � • � �� � � �� � γ γ → o � �� � o

  5. 5 Montagovian Dynamics Semantic interpretation of the sentences Let s be the syntactic category of sentences. Remember that we intend to abstract our notions of left and right contexts over the meaning of the sentences. [[ s ]] = γ → ( γ → o ) → o Composition of two sentence interpretations [[ S 1 . S 2 ]] = λeφ. [[ S 1 ]] e ( λe ′ . [[ S 2 ]] e ′ φ ) Note that this operation is associative!

  6. 6 Montagovian Dynamics Back to DRT and DRSs Consider a DRS: x 1 . . . x n C 1 . . . C m To such a structure, corresponds the following λ -term of type γ → γ → o → o : λeφ. ∃ x 1 . . . x n . C 1 ∧ · · · ∧ C m ∧ φ e ′ where e ′ is a context made of e and of the variables x 1 , . . . , x n .

  7. 7 Montagovian Dynamics Updating and accessing the context John 1 loves Mary 2 . He 1 smiles at her 2 . : γ nil : N → ι → γ → γ push : N → γ → ι sel � a if i = j sel i ( push j a l ) = otherwise sel i l [[ John 1 loves Mary 2 ]] = λeφ. love j m ∧ φ ( push 2 m ( push 1 j e )) [[ He 1 smiles at her 2 ]] = λeφ. smile ( sel 1 e ) ( sel 2 e ) ∧ φ e

  8. 8 Montagovian Dynamics λeφ. [[ John 1 loves Mary 2 ]] e ( λe ′ . [[ He 1 smiles at her 2 ]] e ′ φ ) λeφ. ( λeφ. love j m ∧ φ ( push 2 m ( push 1 j e ))) e ( λe ′ . [[ He 1 smiles at her 2 ]] e ′ φ ) = → β λeφ. ( λφ. love j m ∧ φ ( push 2 m ( push 1 j e ))) ( λe ′ . [[ He 1 smiles at her 2 ]] e ′ φ ) → β λeφ. love j m ∧ ( λe ′ . [[ He 1 smiles at her 2 ]] e ′ φ ) ( push 2 m ( push 1 j e )) → β λeφ. love j m ∧ [[ He 1 smiles at her 2 ]] ( push 2 m ( push 1 j e )) φ = λeφ. love j m ∧ ( λeφ. smile ( sel 1 e ) ( sel 2 e ) ∧ φ e ) ( push 2 m ( push 1 j e )) φ → β λeφ. love j m ∧ ( λφ. smile ( sel 1 ( push 2 m ( push 1 j e ))) ( sel 2 ( push 2 m ( push 1 j e ))) ∧ φ ( push 2 m ( push 1 j e ))) φ → β λeφ. love j m ∧ smile ( sel 1 ( push 2 m ( push 1 j e ))) ( sel 2 ( push 2 m ( push 1 j e ))) ∧ φ ( push 2 m ( push 1 j e )) = λeφ. love j m ∧ smile j ( sel 2 ( push 2 m ( push 1 j e ))) ∧ φ ( push 2 m ( push 1 j e )) = λeφ. love j m ∧ smile j m ∧ φ ( push 2 m ( push 1 j e ))

  9. 9 Montagovian Dynamics Assigning a semantics to the lexical entries [[ s ]] = o [[ n ]] = ι → o [[ np ]] = ( ι → o ) → o [[ s ]] = o (1) [[ n ]] = ι → [[ s ]] (2) = ( ι → [[ s ]] ) → [[ s ]] (3) [[ np ]] Replacing (1) with: [[ s ]] = γ → ( γ → o ) → o we obtain: [[ n ]] = ι → γ → ( γ → o ) → o [[ np ]] = ( ι → γ → ( γ → o ) → o ) → γ → ( γ → o ) → o

  10. 10 Montagovian Dynamics Nouns [[ n ]] = ι → γ → ( γ → o ) → o [[ man ]] = λxeφ. man x ∧ φ e [[ woman ]] = λxeφ. woman x ∧ φ e [[ farmer ]] = λxeφ. farmer x ∧ φ e [[ donkey ]] = λxeφ. donkey x ∧ φ e

  11. 11 Montagovian Dynamics Noun phrases [[ np ]] = ( ι → γ → ( γ → o ) → o ) → γ → ( γ → o ) → o [[ John i ]] = λψeφ. ψ j e ( λe. φ ( push i j e )) [[ Mary i ]] = λψeφ. ψ m e ( λe. φ ( push i m e )) [[ he i ]] = λψeφ. ψ ( sel i e ) e φ [[ her i ]] = λψeφ. ψ ( sel i e ) e φ [[ it i ]] = λψeφ. ψ ( sel i e ) e φ

  12. 12 Montagovian Dynamics Determiners [[ det ]] = [[ n ]] → [[ np ]] [[ a i ]] = λnψeφ. ∃ x. n x e ( λe. ψ x ( push i x e ) φ ) [[ every i ]] = λnψeφ. ( ∀ x. ¬ ( n x e ( λe. ¬ ( ψ x ( push i x e ) ( λe. ⊤ ))))) ∧ φ e

  13. 13 Montagovian Dynamics Transitive verbs [[ tv ]] = [[ np ]] → [[ np ]] → [[ s ]] [[ loves ]] = λos. s ( λx. o ( λyeφ. love x y ∧ φ e )) [[ owns ]] = λos. s ( λx. o ( λyeφ. own x y ∧ φ e )) [[ beats ]] = λos. s ( λx. o ( λyeφ. beat x y ∧ φ e ))

  14. 14 Montagovian Dynamics Relative pronouns [[ rel ]] = ( [[ np ]] → [[ s ]] ) → [[ n ]] → [[ n ]] [[ who ]] = λrnxeφ. n x e ( λe. r ( λψ. ψ x ) e φ )

  15. 15 Montagovian Dynamics [[ beats ]] [[ it 2 ]] ( [[ every 1 ]] ( [[ who ]] ( [[ owns ]] ( [[ a 2 ]] [[ donkey ]] )) [[ farmer ]] )) [[ a 2 ]] [[ donkey ]] = ( λnψeφ. ∃ y. n y e ( λe. ψ y ( push 2 y e ) φ )) [[ donkey ]] → β λψeφ. ∃ y. [[ donkey ]] y e ( λe. ψ y ( push 2 y e ) φ ) → = λψeφ. ∃ y. ( λxeφ. donkey x ∧ φ e ) y e ( λe. ψ y ( push 2 y e ) φ ) → → β λψeφ. ∃ y. donkey y ∧ ( λe. ψ y ( push 2 y e ) φ ) e → β λψeφ. ∃ y. donkey y ∧ ψ y ( push 2 y e ) φ → [[ owns ]] ( [[ a 2 ]] [[ donkey ]] ) = [[ owns ]] ( λψeφ. ∃ y. donkey y ∧ ψ y ( push 2 y e ) φ ) = ( λos. s ( λx. o ( λyeφ. own x y ∧ φ e ))) ( λψeφ. ∃ y. donkey y ∧ ψ y ( push 2 y e ) φ ) → β λs. s ( λx. ( λψeφ. ∃ y. donkey y ∧ ψ y ( push 2 y e ) φ ) ( λyeφ. own x y ∧ φ e )) → → → β λs. s ( λxeφ. ∃ y. donkey y ∧ ( λyeφ. own x y ∧ φ e ) y ( push 2 y e ) φ ) → β λs. s ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) →

  16. 16 Montagovian Dynamics [[ who ]] ( [[ owns ]] ( [[ a 2 ]] [[ donkey ]] )) = [[ who ]] ( λs. s ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) = ( λrnxeφ. n x e ( λe. r ( λψ. ψ x ) e φ )) ( λs. s ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) → β λnxeφ. n x e ( λe. → ( λs. s ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) ( λψ. ψ x ) e φ ) → β λnxeφ. n x e ( λe. ( λψ. ψ x ) ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) e φ ) → → β λnxeφ. n x e ( λe. ( λxeφ. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) x e φ ) → → → β λnxeφ. n x e ( λe. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) [[ who ]] ( [[ owns ]] ( [[ a 2 ]] [[ donkey ]] )) [[ farmer ]] = ( λnxeφ. n x e ( λe. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) [[ farmer ]] → β λxeφ. [[ farmer ]] x e ( λe. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) → = λxeφ. ( λxeφ. farmer x ∧ φ e ) x e ( λe. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) → β λxeφ. farmer x ∧ ( λe. ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e )) e → → → β λxeφ. farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))

  17. 17 Montagovian Dynamics [[ every 1 ]] ( [[ who ]] ( [[ owns ]] ( [[ a 2 ]] [[ donkey ]] )) [[ farmer ]] ) [[ every 1 ]] ( λxeφ. farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) = = ( λnψeφ. ( ∀ x. ¬ ( n x e ( λe. ¬ ( ψ x ( push 1 x e ) ( λe. ⊤ ))))) ∧ φ e ) ( λxeφ. farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) → β λψeφ. ( ∀ x. ¬ ( → ( λxeφ. farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ φ ( push 2 y e ))) x e ( λe. ¬ ( ψ x ( push 1 x e ) ( λe. ⊤ ))))) ∧ φ e → β λψeφ. ( ∀ x. ¬ ( farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ → ( λe. ¬ ( ψ x ( push 1 x e ) ( λe. ⊤ ))) ( push 2 y e )))) ∧ φ e → β λψeφ. ( ∀ x. ¬ ( farmer x ∧ ( ∃ y. donkey y ∧ own x y ∧ → ¬ ( ψ x ( push 1 x ( push 2 y e )) ( λe. ⊤ ))))) ∧ φ e [[ beats ]] [[ it 2 ]] = ( λos. s ( λx. o ( λyeφ. beat x y ∧ φ e ))) [[ it 2 ]] → β λs. s ( λx. [[ it 2 ]] ( λyeφ. beat x y ∧ φ e )) → = λs. s ( λx. ( λψeφ. ψ ( sel 2 e ) e φ ) ( λyeφ. beat x y ∧ φ e )) → β λs. s ( λxeφ. ( λyeφ. beat x y ∧ φ e ) ( sel 2 e ) e φ ) → → β λs. s ( λxeφ. beat x ( sel 2 e ) ∧ φ e ) →

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend