three dimensional line transfer studies of compact
play

Three-dimensional Line Transfer Studies of Compact Molecular ISM at - PowerPoint PPT Presentation

Millimeter and Submillimeter Astronomy at High Angular Resolution(June.8.2009) Three-dimensional Line Transfer Studies of Compact Molecular ISM at the Centers of Active Galaxies -Models meet Observation- Masako YAMADA(ASIAA) K. Wada, K.


  1. “Millimeter and Submillimeter Astronomy at High Angular Resolution”(June.8.2009) Three-dimensional Line Transfer Studies of Compact Molecular ISM at the Centers of Active Galaxies -Models meet Observation- Masako YAMADA(ASIAA) K. Wada, K. Tomisaka, (Y. Kurono)(NAOJ) Yamada, Wada & Tomisaka 2007 Yamada & Tomisaka 2009 (submitted) 2009 年 6 月 8 日月曜日 1

  2. MY, Wada & Tomisaka(2007) I.Mol. Gas in Active Galaxies MY & Tomisaka, submitted NGC6764 (DSS:V band) ✦ compact molecular gas at the active center (R<1kpc) ✦ unified model predicts an obscuring torus [AGN] ✦ many molecular lines (CO,HCN,HCO + ,CS...) have been detected in numbers of galaxies ✦ Three(+) reasons for study molecular ISM 1. Formation & Evolution of Galaxies c p 0 0 1 ~ ✦ molecular gas as star formation site Large scale structure → (???) → present star formation (GMC, mol.core, YSO) physical conditions of the “compact” gases probed by mm/submm lines Yoshida et al.(2006) 2. Chemical & Thermal evolution of Molecular Gas in Extreme Environments 【 Astrochemistry viewpoint 】 ✦ Do mol. gas in active galaxies have peculiar character compared with normal galaxies? 3. As the Energy Budget of Active Galaxies ✦ AGN v.s. starburst ? which dominates the energy source?? 2009 年 6 月 8 日月曜日 2

  3. Current Observations of Nuclear Mol. gas 12 CO(2-1) SMA ← CO obs. of NGC 1097 (Seyfert 1) 1 kpc 1kpc Kohno et al. 2003 VLT MELIPAL + P.-Y. Hsieh et al., 2008 PASJ, 55, L1 VIMOS ISM is in general very inhomogeneous & multi-phase in nature ✦ Current mm./submm. obs found “compact cores” at the centers of active galaxies ✦ typical size of a “compact core”~ 500pc - 1kpc : is it really a single entity? NO!! ✦ Christopher et al. 2005 non-local rad. coupling would take place (e.g. GC) ✦ ex.) Global 3D line- Galactic Center transfer simulation Composite (red: radio; green: mid-infrared; blue: X-ray) 2009 年 6 月 8 日月曜日 3

  4. Physics of ISM : lines as a toolbox obs.: data cube(x, y, ν ) ISM : T kin (x, y, z) n(x, y, z) v=(v x , v y , v z ) τ ν , T ex y mol (x, y, z).. interpreting data sets of I ν in terms ✦ of T kin , n, y(=n mol /n H ), v is not straightforward line RT can form a toolbox to ✦ decipher tangled “riddles” printed in observed line data cube My dear Watson, circumstance evidence is a very tricky thing... and there is nothing more deceptive than an “obvious fact”. 2009 年 6 月 8 日月曜日 4

  5. 64pc II. Calculations (density) Hydrodynamic simulations: ✦ 256x256x128grids( → 64x64x32 grids) ✦ evolution of rotating gas in gravitational ✦ potential of SMBH and halo radiative cooling and SNe heating ✦ feedback are included highly clumpy & turbulent torus 20K<T<1000K, n H < 2x10 6 cm -3 ✦ Wada&Tomisaka, 2005 , Δ v ~ 50km/s torus is globally quasi-steady(Wada&Norman) ✦ ✦ Radiative Transfer: [ray tracing with long characteristics method] non-LTE level population up to J=10 for each grid ✦ assume uniform chemical abundance distribution ✦ 【 to examine chemistry & clumpiness separately 】 0.6km/s<v therm <4.1km/s ⇔ Δ v turb ~50km/s 、 ✦ → velocity structure is taken into account by absorption coeff. profile with micro-turbulence − ( v − v 0 ) 2 � � 1 1 φ ( ν ) d ν = √ π exp dv ∆ v 2 ∆ v turb turb V turb =20km/s Hogerheijde&van der Tak(2000) 2009 年 6 月 8 日月曜日 5

  6. III. Results : Intensity Distribution HCN(1-0), θ =0deg(face-on). HCO + (1-0), θ =0deg. 45deg. y=2x10 -9 , v turb =20km/s ✦ Intensity distributions look quite alike of similar strength HCN/HCO + rotational lines : B(rotational constant) ✦ & μ (electric dipole moment) are almost identical for both molecules 90deg. ✦ HCN(1-0) and HCO + (1-0) lines display clumpy distribution, reflecting the inhomogeneous structure of AGN mol. torus R clump <O(10pc) : Δθ ~ 0.1”@D=20Mpc ✦ ALMA can resolve them 2009 年 6 月 8 日月曜日 6

  7. Current Observations of Nuclear Mol. gas 12 CO(2-1) SMA ← CO obs. of NGC 1097 (Seyfert 1) 1 kpc 1kpc Kohno et al. 2003 VLT MELIPAL + P.-Y. Hsieh et al., 2004 ↓ simulation (HCN) PASJ, 55, L1 VIMOS ISM is in general very inhomogeneous ✦ R clump <O(10pc) : Δθ ~ 0.1”@D=20Mpc in ✦ our simulations -- currently substructures in a compact ✦ nuclei might be smeared out in a obs. beam... .. but we can predict and prepare ✦ what we could expect in ALMA era 2009 年 6 月 8 日月曜日 7

  8. Line Profiles (I) HCO + (1-0) HCN(1-0) Tb[K] Current obs.-> average turbulent bulk veolocity ✦ ALMA-> can find clumps inside ✦ Vr[km/s] obs: NMA(Kohno et al.) Gaussian ave.profile 2009 年 6 月 8 日月曜日 8

  9. Line Profiles (II) H 12 CN H 13 CN (a) (b) J=1-0 J=4-3 1.5 8 6 1.0 T b [K] T b [K] 4 0.5 2 0.0 0 -2 -1 0 1 2 -2 -1 0 1 2 V r /100 [km sec -1 ] V r /100 [km sec -1 ] thick lines and thin isotopologue -> a good indicator of clumpiness ✦ ALMA-> can distinguish line profile distributions of HCN & H13CN ✦ statistical studies of mol. clouds even in the centers of distant galaxies as well as ✦ dynamics will be available with ALMA 2009 年 6 月 8 日月曜日 9

  10. non-LTE effects: Optical Depth & Intensity ✦ Distributions of N H , integrated intensity, and optical thickness τ 0 T b - N H good correlation between N H & Intensity, but not with τ 0 ✦ ✦ nonLTE n J (T kin , n H ) in clumpy torus generates a dispersion of α ν → τ 0 -N H relation widen as the dispersion of α ν (including negative α ν due to pop. inversion) LVG analysis cannot reasonably reproduce (T b , N H , τ 0 ) ✦ τ 0 - N H T b - τ 0 HCN(1-0), y=2x10 -9 2009 年 6 月 8 日月曜日 10

  11. Excitation Temperature Distribution HCN thin limit Tex y=10 -8 HCN y=10 -9 y=10 -10 HCO + LTE T ex <0 low n T=10K, 30K, 100K, 200K, 1,000K(light color lines for low T) ✦ increment of y(abundance) raises the emission rate (j ij =h ν ij A ij ・ n i , n i ∝ y*n H2 ) average torus temperature <T kin >=174K >> T 10 ~ 4.5K ✦ emission from torus stronger than CMB leads to high T ex & weak overshoot ✦ ✦ photon trapping( β ) : lowers effective n cirt (T ex [thin] is shift to lower n H2 ) in our simulation, < τ 0 > ≈ O(1) and β ≦ 1 ( → minor effect compared with the former) ✦ 2009 年 6 月 8 日月曜日 11

  12. non-LTE effects: Optical Depth & Intensity ✦ highly clumpy torus → N H is composed of color: intensity, contour: τ 0 =1 HCN(1-0), y=2*10 -9 1. tenuous gas encompasses the large scale height 2. dense clump + small amount of tenuous ambient Both of 1, 2 are OK ✦ intensity become strong if dense ( Λ ∝ n 2 ) and/or pop. inversion (@ n ~ n crit ) (2):sub-thermal (1):pop.inversion (3):single clump density ∆ τ 2009 年 6 月 8 日月曜日 12

  13. IV.Results of RT Simulations [HCN/HCO + ] rad. transfer results observations HCN/HCO + “pure AGN”(XDR?) “starburst(PDR?)” HCN/CO Imanishi et al. 2004, Kohno et al. 2005 R HCN/HCO+ >2 is observed in a number of galaxies, ✦ but results of rad. transfer suggest “R HCN/HCO+ =1 HCO + ceiling” HCN In order to obtain R HCN/HCO+ ~2: ✦ ✦ HCN should be much abundant than HCO + ↑↓ ✦ XDR/PDR models (y HCN <y HCO+ in XDR) Yamada, Wada, & Tomisaka, 2007 2009 年 6 月 8 日月曜日 13

  14. V. High-J Lines in inhomogeneous ISM ✦ Multi-level analysis → way to evaluate precise (T kin , n) “high density tracer” is necessary to reveal density structure ✦ T kin : high-J transition obs. in submm. band is now AVAILABLE ✦ mol. ν 10 ν J,J-1 HCN 88.6GHz 354.5GHz (J=4-3) CO 115.3GHz 345.8GHz(J=3-2) ✦ Increasing # of obs. of high-J lines have found variation in R 43/10 & possible chemical abundance variation Papadoupolus, 2007 What do high-J lines tell us about inhomogeneous ISM? 2009 年 6 月 8 日月曜日 14

  15. V. HCN R 43/10 face-on edge-on ✦ average ratio takes a value around 1 ⇔ peak-to-peak ratio >1 ✦ difference between (a)&(b) → clumpiness inside ✦ as y increases, R 43/10 decreases below 1 ✦ one-zone analysis suggests R 43/10 ->1 as tau increases ?? Multi-phase nature should be taken into account 2009 年 6 月 8 日月曜日 15

  16. Multi-zone Excitation Analysis : R 43/10 ✦ Model multi-phase torus with a simple isothermal two-phase ISM 2 phases = (dense clumps + tenuous ambient), & optically thin over a whole region ✦ If we assume optically thin, average line ratio becomes : ✦ � vol ( n H 2 yf 4 A 43 h ν 43 ) � vol ( n H 2 f 4 A 43 ) vol ( n H 2 yf 1 A 10 h ν 10 ) = ν 43 R ′ 43 / 10 ≃ × � � vol ( n H 2 f 1 A 10 ) ν 10 =(A) pxpxpxpxpxpx ξ 43 ( n H 2 f 4 A 43 ) d + (1 − ξ 43 )( n H 2 f 4 A 43 ) t ( A ) = ξ 10 ( n H 2 f 1 A 10 ) d + (1 − ξ 10 )( n H 2 f 1 A 10 ) t � � − h ν 41 ξ 4 4 exp ( n H 2 f 1 A 10 ) d + (1 − ξ )( n 2 H 2 G ( T kin , J = 4) f 0 ) t k B T kin ≃ ξ ( n H 2 f 1 A 10 ) d + (1 − ξ )( n 2 H 2 G ( T kin , J = 1) f 0 ) t � G ( T kin , J ) ≡ γ J, 0 t. J d. in dense clumps : ✦ n J ~thermalized in tenuous ambient : n 0 ~1 (balance between coll. excitation and spontaneous decay) 2009 年 6 月 8 日月曜日 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend