thoughts on the coulomb plasma
play

Thoughts on the Coulomb Plasma Yacin Ameur Centre for Mathematical - PowerPoint PPT Presentation

Thoughts on the Coulomb Plasma Yacin Ameur Centre for Mathematical Sciences Lund University, Sweden Yacin.Ameur@maths.lth.se OPCOP17: Castro Urdiales 2017 Particle systems A system { i } n 1 C ("point charges) in external field


  1. Thoughts on the Coulomb Plasma Yacin Ameur Centre for Mathematical Sciences Lund University, Sweden Yacin.Ameur@maths.lth.se OPCOP17: Castro Urdiales 2017

  2. Particle systems A system { ζ i } n 1 ∈ C ("point charges”) in external field nQ . Energy: n n 1 � � H n = log | ζ j − ζ k | + n Q ( ζ j ) . j � = k j = 1 Boltzmann–Gibbs law: 1 e − β H n ( ζ ) d 2 n ζ, ζ = ( ζ j ) n d P n ( ζ ) = 1 . (1) Z β n Assumptions. Q : C → R ∪ { + ∞} is l.s.c., C ω -smooth, and Q ( ζ ) >> log | ζ | , ( ζ → ∞ ) . A minimizer { ζ j } n 1 of H n is a Fekete-configuration . OPCOP17: Castro Urdiales 2017 2 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  3. Frostman’s equilibrium measure Q-energy of a Borel p.m. µ on C 1 �� � I ( µ ) := log | ζ − η | d µ ( ζ ) d µ ( η ) + Q d µ. The equilibrium measure σ minimizes I ( µ ) : µ p.m. Droplet S = S [ Q ] := supp σ. (2) Frostman: d σ ( z ) = χ S ( z ) ∆ Q ( z ) dA ( z ) . Large deviation estimate: if { ζ j } n 1 random sample, f continuous, bounded, 1 n E ( β ) n ( f ( ζ 1 ) + . . . + f ( ζ n )) → σ ( f ) . OPCOP17: Castro Urdiales 2017 3 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  4. Example: Ginibre ensemble ( β = 1) Let Q ( ζ ) = | ζ | 2 . Then S = {| ζ | ≤ 1 } and σ = χ S dA . The process { ζ i } n 1 can be interpreted as eigenvalues of an n × n -matrix with i.i.d. centered complex Gaussian entries of variance 1 / n . � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Figure : Left: Ginibre particles for β = 1. Right: boundary profiles for β = 1 , 2 , 3 , 4 OPCOP17: Castro Urdiales 2017 4 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  5. Sakai theory Technical assumptions: Q is real-analytic in a nbh of S . ∆ Q > 0 in a nbh of ∂ S . Conclusions: S c is an Unbounded Quadrature Domain (in wide sense of Shapiro). ∂ S is a union of finitely many analytic curves. Possible singularities: cusps pointing out of S and double points. OPCOP17: Castro Urdiales 2017 5 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  6. Droplets 1 1.0 1.0 0.5 0.5 � 0.5 0.5 1.0 1.5 � 1.0 � 0.8 � 0.6 � 0.4 � 0.2 � 0.5 � 0.5 � 1.0 � 1.0 Figure : The Deltoid is not admissible; it has three maximal 3/2 cusps. 5/2 cusp is OK. OPCOP17: Castro Urdiales 2017 6 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  7. Droplets 2 Figure : Double point and 5/2 cusp under Laplacian growth. OPCOP17: Castro Urdiales 2017 7 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  8. Global results Linear statistics on ( C n , P n ) n � ( f ∈ C ∞ fluct n ( f ) = f ( ζ j ) − n σ ( f ) , b ( C )) . 1 fluct n ( f ) converges in distribution to the normal N ( e f , σ 2 f ) , where e f = ( 1 β − 1 � � f · ∆( χ S + L S ) , σ 2 | ∂ f S | 2 , 2 ) f = ( L = log ∆ Q ) . C C Here f S equals f in S and is harmonic and bounded in S c . β = 1, ∂ S C 1 -smooth, S connected, f C 2 -smooth. (MAH 2011) β > 0, f smooth, supported in the bulk. (BBNY 2016) OPCOP17: Castro Urdiales 2017 8 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  9. Intensity functions Let N ǫ ( η ) number of ζ j which hit D ( η, ǫ ) . 1-point function: E ( β ) n ( N ǫ ( η )) R n ( η ) = lim . ǫ 2 ǫ → 0 2-point function: E ( β ) n ( N ǫ ( η 1 ) · N ǫ ( η 2 )) R n , 2 ( η 1 , η 2 ) = lim . ǫ 4 ǫ → 0 If β = 1, the process is determinantal , � k � R n , k ( η 1 , . . . , η k ) = det K n ( η i , η j ) i , j = 1 . Here K n is a "correlation kernel” = reprokernel for W n := { q · e − nQ / 2 ; degree ( q ) < n } ⊂ L 2 . OPCOP17: Castro Urdiales 2017 9 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  10. Ward’s identity Let { ζ j } n 1 system. For smooth ψ define r.v.’s n n n ψ ( ζ j ) − ψ ( ζ k ) A ψ = 1 � � � , B ψ = n ∂ Q ( ζ j ) ψ ( ζ j ) , C ψ = ∂ψ ( ζ j ) . 2 ζ j − ζ k j � = k 1 1 Theorem For all ψ E n ( β · ( A ψ − B ψ ) + C ψ ) = 0 . This is an implicit relation between R n and R n , 2 . (Proof: reparametrization invariance of the partition function C n e − β H n dV n . ) � Z n := OPCOP17: Castro Urdiales 2017 10 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  11. Microscopic scale Fix p ∈ S . r n = r n ( p ) satisfies: � n · ∆ Q ( ζ ) dA ( ζ ) = 1 . D ( p n , r n ) Regular case: If ∆ Q ( p ) > 0 then 1 r n ∼ . � n ∆ Q ( p ) Vanishing equilibrium density to order k : If k is smallest s.t. ∆ k Q ( p ) > 0 then r n ∼ ( k [( k − 1 )!] 2 ) 1 / 2 k · n − 1 / 2 k . ∆ k Q ( p ) OPCOP17: Castro Urdiales 2017 11 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  12. Rescaled system z j = r n ( ζ j − p ) . Figure : Left: a moving point p n approaching a cusp. Right: the profile of a translation invariant "candidate” for the micro-density at p n , β = 1. OPCOP17: Castro Urdiales 2017 12 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  13. Rescaling at bulk singularities Figure : These figures show the repelling effect of inserting a point charge close to a bulk singularity caused by vanishing equilibrium density. OPCOP17: Castro Urdiales 2017 13 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  14. Free boundary vs hard edge Figure : The hard edge is obtained by redefining Q = + ∞ outside S . The intensity has been computed for β = 1. Free boundary ↔ GFF with free BCs. Hard edge ↔ GFF with Neumann BCs. (Joint w/ H.-J. Tak.) OPCOP17: Castro Urdiales 2017 14 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  15. Gaussian field with Dirichlet BCs in the disk Figure : A field approximation Φ n . The figure on the right shows the level curve Φ n + h = 1 / 2 where h is harmonic measure for the upper half-circle. The level curve resembles an SLE 4 , in accordance with Sheffield-Schramm’s theorem. Three relevant BCs: Dirichlet, Free, Neumann. OPCOP17: Castro Urdiales 2017 15 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  16. Ward’s equation R n ( z ) = R n ( ζ ) R n , 2 ( z , w ) = R n , 2 ( ζ, η ) , z = r n ( ζ − p ) , w = r n ( η − p ) . B n ( z , w ) = ( R n ( z ) R n ( w ) − R n , 2 ( z , w )) / R n ( z ) . � B ( z , w ) C n ( z ) := z − w dA ( w ) . Ward’s equation: ∂ C n ( z ) = R n ( z ) − 1 − 1 ¯ β ∆ log R n ( z ) + o ( 1 ) . If β = 1 then normal families show R n k → R , C n k → C = C , where R → C by analytic continuation. So ¯ ∂ C = R − 1 − ∆ log R is an equation for the single function R . OPCOP17: Castro Urdiales 2017 16 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  17. Translation invariance To find a true micro-density, we need side-conditions in Ward’s equation. It is natural to assume translation invariance : R ( z ) = F ( z + ¯ z ) for some function F . The complete t.i. solution to Ward’s equation was given in AKM 14. The above might give a "physical proof” of universality, but for a mathematical proof we must rule out the possibility of non-t.i. solutions. For t.i. solutions, Ward’s equation can be written as a convolution equation and solved by Fourier analysis. For possibly non-t.i. solutions, we get a twisted convolution equation , known from Fourier analysis on the Heisenberg group. (Joint w/ J.-L. Romero.) OPCOP17: Castro Urdiales 2017 17 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  18. Spacings Fix 0 ∈ S and let z j = r − 1 n ζ j , j = 1 , . . . , n . Put η n = P ( β ) F n = { at least one particle falls in D } , n ( F n ) . Spacing at 0: { z j } n s 0 = min z j ∈ D min k � = j | z j − z k | , 1 ∈ F n . Repulsion theorem: if β > 1 then there is a constant c = c ( n , β ) > 0 so that 1 P ( β ) 2 ( β − 1 ) | F n ) ≥ 1 − m 0 ǫ, n ( { s 0 ≥ c · ( ǫη n ) 0 < ǫ < 1 , 1 where m 0 = 16 c − 2 ( ǫη n ) − β − 1 . Proof: (i) Estimate expected L 2 β -norm for weighted random Lagrange polynomials, (ii) Use Bernstein to estimate expected L 2 β norm of gradient, (iii) Morrey’s and Chebyshev’s inequalities give estimate for distance between zeros, with high probability. OPCOP17: Castro Urdiales 2017 18 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

  19. Crystallization Corollary: if c < 1 / ( 8 √ e ) and n = n ( c ) large enough, then β →∞ P ( β ) lim n ( { s 0 > c } ) = 1 . Abrikosov conjecture: the right bound should be c < 2 1 / 2 3 − 1 / 4 . Q: What patterns will emerge near a bulk singularity caused by vanishing equilibrium density? OPCOP17: Castro Urdiales 2017 19 / Yacin Ameur (LU) Thoughts on the Coulomb Plasma 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend