theoretical approaches for nanoscale thermoelectric
play

Theoretical approaches for nanoscale thermoelectric phenomena - PowerPoint PPT Presentation

Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy Quantum computation and information is a quantum cryptography) up to


  1. <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOygmML7VAymTtaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0gMRa5y04+5RSU1hiRJYb8wyLNYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS6iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBXTgCm7hHroQgoAEXuDNm3iv3vuqpq37uwEfsn7+Aap5IoM</latexit> <latexit sha1_base64="R9TBDumeJuZVdCYBPgayQaC/qc=">AB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NOcdlJcRxy2g5HjUnfqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKpiM8IB2jRU4pqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG+sfl37hwowyEcwQm4cA7XcAN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit> <latexit sha1_base64="R9TBDumeJuZVdCYBPgayQaC/qc=">AB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NOcdlJcRxy2g5HjUnfqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKpiM8IB2jRU4pqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG+sfl37hwowyEcwQm4cA7XcAN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit> <latexit sha1_base64="+oMm6VNnWuShRDNcJU9+qmq+3bY=">ACAHicbVBNS8NAEN34WetX1IvgJVgEL5bEi3oQir148FCltYUmhM120i7dbMLuRighXvwrXjyoePVnePfuG1z0NYHMzem2F3XpAwKpVtfxsLi0vLK6ultfL6xubWtrmzey/jVBokZjFohNgCYxyaCmqGHQSATgKGLSDYX3stx9ASBrzphol4EW4z2lICVZa8s19FxT265fOiRsKTLKmf5frdpP7ZsWu2hNY8QpSAUVaPjml9uLSRoBV4RhKbuOnSgvw0JRwiAvu6mEBJMh7kNXU4jkF42uSC3jrTSs8JY6OLKmqi/NzIcSTmKAj0ZYTWQs95Y/M/rpio89zLKk1QBJ9OHwpRZKrbGcVg9KoAoNtIE0H1Xy0ywDoJpUMr6xCc2ZPnSeu0elG1b+1K7apIo4QO0CE6Rg46QzV0jRqohQh6RM/oFb0ZT8aL8W58TEcXjGJnD/2B8fkDA2yWKQ=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQ=">ACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS0IUymk3boZBJmJkIJceOvuHGh4tbPcOfOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRThxFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qgWLGRJgLqv8K8QDpJQOraJDsGdPnifOSe2iZt2eVutXRplsA8OwBGwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="AVkidoGiZKGjobmFXl/ZhZ6+wk=">AB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO/GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JKBs2YAw58Bg2/f5H5jQfgkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0pG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKUlw=</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOygmML7VAymTtaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0gMRa5y04+5RSU1hiRJYb8wyLNYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS6iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBXTgCm7hHroQgoAEXuDNm3iv3vuqpq37uwEfsn7+Aap5IoM</latexit> <latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOoqRnqJIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46bt2puzeWp37jO9aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOlNEpSRSI8fyhMmaViK2/DGlBsGITDQgLqv9q4RESCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ=</latexit> <latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOoqRnqJIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46bt2puzeWp37jO9aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOlNEpSRSI8fyhMmaViK2/DGlBsGITDQgLqv9q4RESCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ=</latexit> <latexit sha1_base64="zDW2uEPn9Prthn+nPZd4cAl3CQ=">AB/3icbVDLSsNAFJ3UV62vqAsXbgaLUKGUxI0KIkU3LrqopbGFJoTJdNIOnUnCzEQopRt/xY0LFbf+hjv/xkmbhVYP3MvhnHuZuSdIGJXKsr6MwtLyupacb20sbm1vWPu7t3LOBWYODhmsegGSBJGI+IoqhjpJoIgHjDSCUY3md95IELSOGqrcUI8jgYRDSlGSku+eVBp+42rt+qulWXp37jMutE98sWzVrBviX2DkpgxN3/x0+zFOYkUZkjKnm0lypsgoShmZFpyU0kShEdoQHqaRogT6U1mB0zhsVb6MIyFrkjBmfpzY4K4lGMe6EmO1FAuepn4n9dLVXjuTWiUpIpEeP5QmDKoYpilAftUEKzYWBOEBdV/hXiIBMJKZ1bSIdiLJ/8lzmntombdWeX6dZ5GERyCI1ABNjgDdXALmsABGEzBE3gBr8aj8Wy8Ge/z0YKR7+yDXzA+vgGw0pS7</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> <latexit sha1_base64="Kb2JlA5x3IdX0EP9KZN4Xg9M=">AB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQoRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXldW14npY3Nre0f3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke49uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rteqOlUnTLzGVdZbJ5eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit> Two-terminal (thermoelectric) power production Right ( R ) Left ( L ) reservoir reservoir S T , T , L L R R P = [( µ R − µ L ) /e ] J e ( T L > T R , µ L < µ R ) The upper bound to efficiency is given by the Carnot efficiency (expected only at zero power; intuitively, finite currents entail dissipation): η C = 1 − T R T L

  2. Scattering theory for two reservoirs Conserved currents: Heat currents: First law of thermodynamics:

  3. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Thermoelectric efficiency (power production) Charge current Heat current from reservoirs: � ∞ J q. α = 1 J h, α dE ( E − µ α ) τ ( E )[ f L ( E ) − f R ( E )] h −∞ Efficiency:

  4. Delta-energy filtering and Carnot efficiency If transmission is possible only inside a tiny energy window around E=E ✶ then Carnot efficiency Carnot efficiency obtained in the limit of reversible transport (zero entropy production) and zero output power [Mahan and Sofo, PNAS 93, 7436 (1996); Humphrey et al., PRL 89, 116801 (2002)]

  5. Example: single-level quantum dot Dot’s scattering matrix: The Green’s function is for a non-Hermitian effective Hamiltonian taking into account coupling to the dots operator coupling the single-level dot to reservoirs:

  6. Short intermezzo: Cyclic thermal machines The upper bound to efficiency is given by the Carnot efficiency: Carnot efficiency obtained for quasi-static transformation (zero extracted power) The ideal Carnot engine is a reversible machine, since there is no dissipation (no entropy production)

  7. Finite-time thermodynamics I: endoreversible cyclic engines Dissipation is due to finite thermal conductances between heat reservoirs and the ideal heat engine

  8. Output power: Optimize power with respect to

  9. The efficiency at maximum power (Curzon-Ahlborn efficiency) is independent of the heat conductances: [Yvon, 1955; Chambadal, 1957; Novikov, 1958; Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)] Within linear response:

  10. Finite-time thermodynamics II: exoreversible cyclic engines Irreversibility only arises due to internal dissipative processes Stochastic thermodynamics [Seifert, Rep. Prog. Phys. 75, 126001 (2012)] Time-dependent trapping potential Time-dependent probability density

  11. Fokker-Planck equation: is the mobility Gaussian distribution Exactly solvable model

  12. Schmiedl-Seifert efficiency at maximum power: related to the ratio of entropy production during the hot and cold isothermal steps of the cycle for the symmetric case [Schmiedl and Seifert, EPL 81, 20003 (2008)] Within linear response:

  13. Low-dissipation engines The entropy production vanishes in the limit of infinite-time cycles:

  14. The CA limit is recovered for symmetric dissipation: dots: efficiencies of various thermal power plants [Esposito, Kawai, Lindenberg, Van den Broeck, PRL 105, 150603 (2010)]

  15. Bekenstein-Pendry bound There is an purely quantum upper bound on the heat current through a single transverse mode [Bekenstein, PRL 46 , 923 (1981); Pendry, JPA 16 , 2161 (1983) ] For a reservoir coupled to another reservoir at T=0 through a -mode constriction which lets particle flow at all energies:

  16. Maximum power of a heat engine Since the heat flow must be less than the Bekenstein- Pendry bound and the efficiency smaller than Carnot efficiency also the output power must be bounded Within scattering theory: [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  17. Efficiency optimization (at a given power) Find the transmission function that optimizes the heat-engine efficiency for a given output power [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  18. Trade-off between power and efficiency Carnot efficiency f o r b i d d e 1 n Efficiency Maximum 2 possible power, P max gen increase voltage power generated, P gen Result from (nonlinear) scattering theory [Whitney, PRL 112 , 130601 (2014); PRB 91 , 115425 (2015)]

  19. Power-efficiency trade-off including phonons no phonons Efficiency weak phonons strong phonons 0 Power output, P [see Whitney, PRB 91 , 115425 (2015)]

  20. Boxcar transmission in topological insulators Graphene nanoribbons with heavy adatoms and nanopores [Chang et al., Nanolett., 14, 3779 (2014)]

  21. Linear response for coupled (particle and heat) flows Stochastic baths : ideal gases at fixed temperature and electrochemical potentia l ∆ µ = µ L − µ R Onsager relation (for time- reversal symmetric systems): ∆ T = T L − T R Positivity of entropy production: (we assume T L > T R , µ L < µ R )

  22. Onsager and transport coefficients Note that the positivity of entropy production implies that the (isothermal) electric conductance G>0 and the thermal conductance K>0

  23. Seebeck and Peltier coefficients Seebeck and Peltier coefficients are related a Onsager reciprocal relation (when time symmetry is not broken, we simply have )

  24. Interpretation of the Peltier coefficient Entropy current: entropy transported by the electron flow each electron carries an entropy of advective term in thermal transport (reversible) open-circuit term in thermal transport (by electrons and phonons, irreversible)

  25. Entropy production/ heat dissipation rate Joule heating heat lost by thermal resistance disappears for time-reversal To minimize symmetric systems dissipation large G and small K are needed

  26. Linear response? (exhaust gases) (room temperature) [Vining, Nat. Mater. 8 , 83 (2009)] Linear response for small temperature and electrochemical potential differences (compared to the average temperature) on the scale of the relaxation length Exhaust pipe: temperature drop over a mm scale: temperature drop of 0.003 K on the relaxation length scale (of 10 nm)

  27. <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> <latexit sha1_base64="(nul)">(nul)</latexit> Maximum efficiency Within linear response and for steady-state heat to work conversion: Find the maximum of η over , for fixed (i.e., over the applied voltage Δ V for fixed temperature difference Δ T ) ( T L ≈ T R ≈ T )

  28. Thermoelectric figure of merit ZT ≡ L 2 det L = GS 2 eh T K

  29. Conditions for Carnot efficiency ZT diverging implies that the Onsager matrix is ill- conditioned, that is, the condition number diverges: In such case the system is singular (tight coupling limit): J h ∝ J e (the ratio J h /J e is independent of the applied voltage and temperature gradients)

  30. Efficiency at maximum power Output power Find the maximum of P over , for fixed (over the applied voltage Δ V for fixed Δ T ) Maximum output power L 2 h = 1 P max = T eh F 2 4 S 2 G ( ∆ T ) 2 4 L ee Power factor

  31. P quadratic function of , with maximum at half of the stopping force : Efficiency at maximum power ZT η ( ω max ) = η C ZT + 2 ≤ η CA ≡ η C 2 2 η CA Curzon-Ahlborn upper bound

  32. η max η ( ω max ) P max

  33. Efficiency versus power ⇒

  34. Maximum refrigeration efficiency (heat extracted from the cold reservoir) Cooling power Coefficient of performance (COP) η ( r ) = J h P (can be >1) ZT is the figure of merit also for refrigeration

  35. ZT is an intrinsic material property? For mesoscopic systems size-dependence for G,K,S can be expected In the diffusive transport regime Ohm’s and Fourier’s scaling laws hold:

  36. Local equilibrium Under the assumption of local equilibrium we can write phenomenological equations with ∇ T and ∇ µ rather than Δ T and Δ µ charge and heat current densities In this case we connect Onsager coefficients to electric and thermal conductivity rather than to conductances � j e � j h � � , σ = κ = � V � T � T =0 j e =0

  37. Crossover from endoreversible to exoreversible regimes Thermoelectric generator: internal dissipation (Joule heating, thermal conductance) and external dissipation (dissipative thermal coupling to reservoirs) [Apertet, Ouerdane, Goupil, Lecoeur, PRE 85, 031116 (2012)]

  38. Linear response and Landauer formalism The Onsager coefficients are obtained from the linear response expansion of the charge and thermal currents L ee = e 2 TI 0 , L eh = L he = eTI 1 , L hh = TI 2

  39. Wiedemann-Franz law Phenomenological law: the ratio of the thermal to the electrical conductivity is directly proportional to the temperature, with a universal proportionality factor. Lorenz number

  40. Sommerfeld expansion The Wiedemann-Franz law can be derived for low- temperature non-interacting systems both within kinetic theory or Landauer approach In both cases it is substantiated by Sommerfeld expansion. Within Landauer approach we consider � ∞ J q. α = 1 dE ( E − µ α ) τ ( E )[ f L ( E ) − f R ( E )] h −∞ We assume smooth transmission functions τ (E) in the neighborhood of E=µ:

  41. To leading order in k B T/E F with G = e 2 I 0 ≈ e 2 I 2 − I 2 ≈ π 2 k 2 K = 1 � � B T 1 h τ ( µ ) , τ ( µ ) 3 h T I 0 Neglected I 12 /I 0 with respect to I 2 , which in turn implies L ee L hh >>(L eh ) 2 and Wiedemann-Franz law: � 2 G ≈ π 2 � k B K T e 3

  42. Wiedemann-Franz law and thermoelectric efficiency ZT = GS 2 T = S 2 K L Wiedemann-Franz law derived under the condition L ee L hh >>(L eh ) 2 and therefore Wiedemann-Franz law violated in - low-dimensional interacting systems that exhibit non- Fermi liquid behavior - (smll) systems where transmission can show significant energy dependence

  43. (Violation of) Wiedemann-Franz law in small systems Consider a (basic) model of a molecular wire coupled to electrodes: Transmission: Green’s function: Level broadening functions: Self-energies:

  44. Wide band limit: level widths energy independent: Take Transmission: Green’s function obtained by inverting

  45. Mott’s formula for thermopower For non-interacting electrons (thermopower vanishes when there is particle-hole symmetry) � � � ∞ − ∂ f −∞ dE ( E − µ ) τ ( E ) S = 1 = 1 I 1 ∂ E � � � ∞ eT I 0 eT − ∂ f −∞ dE τ ( E ) ∂ E Consider smooth transmissions Electron and holes contribute with opposite signs: we want sharp, asymmetric transmission functions to have large S (ex: resonances, Anderson QPT, see Imry and Amir, 2010), violation of WF, possibly large ZT.

  46. Metal-insulator 3D Anderson transition x conductivity critical exponent [G.B., H. Ouerdane, C. Goupil, arXiv:1602.06590; Comptes Rendus Physique, in press]

  47. Energy filtering For good thermoelectric we desire violation of WF law such that: No dispersion with delta-energy filtering: ZT diverges

  48. Thermoelectricity in the Coulomb blockade regime, Kinetic equations. Quantum dot model

  49. Multilevel interacting quantum dot Discrete energy levels: ideal to implement energy filtering Study the effects of Coulomb interaction between electrons [Erdmann, Mazza, Bosisio, G.B., Fazio, Taddei PRB 95 , 245432 (2017)]

  50. Sequential (single-electron) tunnelling regime single-electron levels of the QC capacitance number of electrons in the dot electrostatic (Coulomb) interaction tunneling rate from level p to reservoir 𝛽 Weak coupling to the reservoirs: thermal energy , level spacing and charging energy much larger than the coupling energy between the QD and the reservoirs: charge quantized Electrostatic energy single-electron charging energy

  51. Energy conservation Configuration determined by occupation numbers Non-equilibrium probability Energy conservation for tunnelling into or from reservoirs:

  52. Kinetic equations One kinetic equation for each configuration: Stationary solution:

  53. Steady-state currents Charge current: Energy current: Heat current:

  54. Quantum limit Energy spacing and charging energy much bigger than Analytical results for equidistant levels: power factor (energy filtering)

  55. Coulomb interaction may enhance the thermoelectric performance of a QD Compare interacting and non-interacting two-terminal QD with the same energy spacing T h e r m a l c o n d u c t a n c e suppressed by Coulomb interaction: ZT is greatly increased. For a single level K=0 (charge and heat current proportional). For at least two levels Coulomb blockade prevents a second electron to enter when one is already there (electrostatic energy to be paid).

  56. Strongly interacting systems, Electronic Phase transitions, Power-efficiency trade-off, Power-efficiency-fluctuations trade-off, Carnot efficiency at finite power? Generality of Onsager reciprocal relations

  57. Short intermezzo: a reason why interactions might be interesting for thermoelectricity thermal conductance at zero voltage If the ratio K’/K diverges, then the Carnot efficiency is achieved

  58. Thermodynamic properties of the working fluid coupled equations:

  59. Setting dN=0 in the coupled equations:

  60. Thermodynamic cycle maximum efficiency (over d 𝜈 at fixed dT): thermodynamic figure of merit:

  61. Analogy with a classical gas heat capacity at constant p or V

  62. Power-efficiency trade-off: Is it possible to overcome the non-interacting bound? Noninteracting systems: for P/P max <<1, Bound not favorable for power-efficiency trade-off; due to the fact that delta-energy filtering is the only mechanism to achieve Carnot for noninteracting systems For interacting systems it is possible to achieve Carnot without delta-energy filtering

  63. Interacting systems, Green-Kubo formula The Green-Kubo formula expresses linear response transport coefficients in terms of dynamic correlation functions of the corresponding current operators, cal- culated at thermodynamic equilibrium Non-zero generalized Drude weights signature of ballistic transport

  64. Conservation laws and thermoelectric efficiency Suzuki’s formula (which generalizes Mazur’s inequality) for finite-size Drude weights Q m relevant (i.e., non-orthogonal to charge and thermal currents), mutually orthogonal conserved quantities Assuming commutativity of the two limits,

  65. Momentum-conserving systems Consider systems with a single relevant constant of motion, notably momentum conservation Ballistic contribution to vanishes since D ee D hh − D 2 eh = 0 ZT = σ S 2 T ∝ Λ 1 − α → ∞ when Λ → ∞ κ ( α < 1) (G.B., G. Casati, J. Wang, PRL 110, 070604 (2013))

  66. For systems with more than a single relevant constant of motion, for instance for integrable systems, due to the Schwarz inequality eh = || x e || 2 || x h || 2 � � x e , x h � � 0 D ee D hh � D 2 � � x i = ( x i 1 , ..., x iM ) = 1 � J i Q 1 � , ..., � J i Q M � � � 2 Λ � Q 2 � Q 2 1 � M � M � � x e , x h � = x ek x hk k =1 Equality arises only in the exceptional case when the two vectors are parallel; in general det L ∝ L 2 , κ ∝ Λ , ZT ∝ Λ 0 ∝ Λ 2

  67. Example: 1D interacting classical gas Consider a one dimensional gas of elastically colliding particles with unequal masses: m, M (integrable model) ZT = 1 (at µ = 0) ZT depends on the system size

  68. Quantum mechanics needed: Relation between density and electrochemical potential Reservoirs modeled as ideal (1D) gases Maxwell-Bolzmann distribution of velocities injection rates grand partition function density de Broglie thermal wave length

  69. Non-decaying correlation functions

  70. Carnot efficiency at the thermodynamic limit ZT = σ S 2 Anomalous T thermal transport k [R. Luo, G. B., G. Casati, J. Wang, PRL 121 , 080602 (2018)]

  71. Delta-energy filtering mechanism? A mechanism for achieving Carnot different from delta-energy filtering is needed

  72. Validity of linear response The agreement with linear response improves with N

  73. Non-interacting classical bound (but quantum mechanics needed) charge current heat current Maxwell-Boltzmann distribution (in 1D)

  74. 1.0 0.8 0.6 Η ê Η C 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 P ê P max

  75. <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOygmML7VAymTtaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0gMRa5y04+5RSU1hiRJYb8wyLNYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS6iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBXTgCm7hHroQgoAEXuDNm3iv3vuqpq37uwEfsn7+Aap5IoM</latexit> <latexit sha1_base64="GwhlYFXBSeBmFoHvBy/FdU0sTd0=">AB+HicbZC9TgJBFIXv+ouIirY0E4mJFVls1M7ExhITV0hgQ2aHC0yYndnMzBo3GwobX8XGQo1PYufbOAsUCp5ki/nzN89USK4sb7/7a2tb2xubZd2yruVvf2D6mHl3qhUMwyYEkp3ImpQcImB5VZgJ9FI40hgO5pcF3n7AbXhSt7ZLMEwpiPJh5xR6x+tdYbR+ox70YZKa6gmg0iZIGw2m/Wvcb/kxkFZoLqMNCrX71qzdQLI1RWiaoMd2mn9gwp9pyJnBa7qUGE8omdIRdh5LGaMJ8NsSUnDhnQIZKuyUtmbm/T+Q0NiaLI7czpnZslrPC/C/rpnZ4EeZcJqlFyeYPDVNBrCJFI2TANTIrMgeUae7+StiYasqs63sSmguj7wKwVnjsuHf+lCGhzDKThHK7gBloQAIMneIE3ePevVfvY97Wmreo7Qj+yPv8ARwBluA=</latexit> <latexit sha1_base64="GwhlYFXBSeBmFoHvBy/FdU0sTd0=">AB+HicbZC9TgJBFIXv+ouIirY0E4mJFVls1M7ExhITV0hgQ2aHC0yYndnMzBo3GwobX8XGQo1PYufbOAsUCp5ki/nzN89USK4sb7/7a2tb2xubZd2yruVvf2D6mHl3qhUMwyYEkp3ImpQcImB5VZgJ9FI40hgO5pcF3n7AbXhSt7ZLMEwpiPJh5xR6x+tdYbR+ox70YZKa6gmg0iZIGw2m/Wvcb/kxkFZoLqMNCrX71qzdQLI1RWiaoMd2mn9gwp9pyJnBa7qUGE8omdIRdh5LGaMJ8NsSUnDhnQIZKuyUtmbm/T+Q0NiaLI7czpnZslrPC/C/rpnZ4EeZcJqlFyeYPDVNBrCJFI2TANTIrMgeUae7+StiYasqs63sSmguj7wKwVnjsuHf+lCGhzDKThHK7gBloQAIMneIE3ePevVfvY97Wmreo7Qj+yPv8ARwBluA=</latexit> <latexit sha1_base64="hsfpqjk/0uYw3XODntxaikWhXUA=">ACA3icbVA9T8MwEHXKVylfAcYuFhUSU5WyAFsFC2ORCK3URpXjXlurjh3ZDiKOrDwV1gYALHyJ9j4NzhtBmh50klP793Zdy+MOdPG876d0srq2vpGebOytb2zu+fuH9xpmSgKPpVcqk5INHAmwDfMcOjECkgUcmiHk6vcb9+D0kyKW5PGERkJNiQUWKs1HervXEoH7JumOL8CaKwAh1LoSGY9t2aV/dmwMukUZAaKtDqu1+9gaRJBMJQTrTuNrzYBlRhlEO0ov0RATOiEj6FoqSAQ6yGZHTPGxVQZ4KJUtYfBM/T2RkUjrNAptZ0TMWC96ufif103M8DzImIgTA4LOPxomHBuJ80TwgCmghqeWEKqY3RXTMVGEGptbxYbQWDx5mfin9Yu6d+PVmpdFGmVURUfoBDXQGWqia9RCPqLoET2jV/TmPDkvzrvzMW8tOcXMIfoD5/MHpt2YSg=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> <latexit sha1_base64="8lf/Y1auXT8/vunbgNUdnWycSs=">ACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe2tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RCKjkUrUioEzAYFhkMrUDiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/e3U9M/DjIkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit> Overcoming the non-interacting bound Non-interacting bound [by linear response]

  76. Multiparticle collision dynamics (Kapral model) in 2D Streaming step: free propagation during a time τ Collision step: random rotations of the velocities of the particles in cells of linear size a with respect to the center of mass velocity: Momentum is conserved

  77. Overcoming the (2D) non-interacting bound

  78. Results can be extended to cooling linear response numerical data

  79. Applications for cold atoms?

  80. Power-efficiency trade-off at the verge of phase transitions For heat engines described as Markov processes: [N. Shiraishi, K. Saito, H. Tasaki, PRL 117 , 190601 (2016)] For a working substance at a critical point: [M. Campisi, R. Fazio, Nature Comm. 7 , 11895 (2016); see also Allahverdyan et al., PRL 111 , 050601 (2013)] Results compatible only with diverging amplitude A when approaching the Carnot efficiency

  81. Power-efficiency-fluctuations trade-off For classical Markovian dynamics on a finite set of states and overdamped Langevin dynamics, trade-off between power, efficiency, and constancy for steady- state engines: [P. Pietzonka, U. Seifert, PRL 120 , 190602 (2018)] Bound violated in quantum mechanics, e.g. for resonant tunnelling transport (noninteracting system), but not close to Carnot efficiency. The problem for interacting systems is open. [J. Liu. D. Segal, PRE 99 , 062141 (2019)]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend