in situ x ray structural analysis of in situ x ray
play

In Situ X-ray Structural Analysis of In Situ X-ray Structural - PowerPoint PPT Presentation

In Situ X-ray Structural Analysis of In Situ X-ray Structural Analysis of Nanoscale Molecular Self-Assemblies on Nanoscale Molecular Self-Assemblies on Functionalized Surfaces Functionalized Surfaces Michael Bedzyk, Joe Libera and Hua Jin


  1. In Situ X-ray Structural Analysis of In Situ X-ray Structural Analysis of Nanoscale Molecular Self-Assemblies on Nanoscale Molecular Self-Assemblies on Functionalized Surfaces Functionalized Surfaces Michael Bedzyk, Joe Libera and Hua Jin Nanoscale Science & Engineering Center Northwestern University Evanston, IL USA X-rays: APS, NSLS, ESRF, NU X-ray Lab Funding: NSF & NIH

  2. Outline: 1. Review experimental approach for X-ray analysis of layer-by-layer molecular assembly on functionalized surfaces: 2. Examples: a.) RNA adsorbed to amine terminated Self-Assembled Monolayer b.) Porphyrin-based nanoporous molecular films c.) Functionalized SAM attached to H-passivated Si(111) d.) In situ analysis of RNA adsorbed to charged surface

  3. Experimental Approach Thin Film Characterization X-ray Tools: • X-ray Reflectivity (XRR)  e - density profile, thickness & interface roughness • X-ray Fluorescence (XRF)  Composition, Heavy atom coverages • X-ray Standing Waves (XSW): Heavy atom density profile Also study same samples with AFM and XPS

  4. X-ray Vision Pros: Weak interaction with matter High penetrating power --> In situ analysis ---> buried structures Non destructive Atomic-scale resolution Advanced Photon Source Cons: Weak interaction with matter Need very intense X-ray source --> Synchrotron X-ray Source

  5. Some X-ray Basics: Wave Property -> Structural Info λ = 0.1 to 10 Å wavelength E-M radiation X-rays scatter coherently from electrons Particle Property -> Compositional Info E γ = 1 to 100 keV energy Photo effect: Inner shell (K, L) ionization XRF energy spectrum: Decay of excited ion to ground state by characteristic XRF emission

  6. Some X-ray Basics: (continued) Optics : Index of refraction: n < 1 for x-ray frequencies Snell’s Law: n 1 cos θ 1 = n 2 cos θ 2 --> Total External Reflection (TER) of X-rays θ 2 = 0 --> TER --> θ 1 = θ C (critical angle) θ C = (2 δ ) 1/2 , where n=1- δ , δ ~ N e Eg. Si at λ = 1.54 Å, δ = 7.4 x 10 -6 , θ C = 3.9 mrad = 0.22° θ 1 θ 1 θ 2 TER -> Evanescent Wave Effect

  7. X-Ray Reflectivity Analysis Example: SAM / Si(111) XRR data and fit 0 10 l e d o -2 10 m b a l -4 s 10 Reflectivity Reflectivity 1 -6 H-Si H-Si 10 -8 10 SAM-1 SAM-1 -10 10 SAM-2 SAM-2 -12 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 1 - 1 q (Å q (Å ) q = 4 π sin θ / λ , reciprocal space coord. Fresnel Theory: R~ 1 for q < q C = 0.031 Å -1 Si mirror TER R F = (2q/q C ) -4 for q>>q C . Fourier transform of a step function.

  8. X-Ray Reflectivity Analysis Example: SAM / Si(111) XRR data and fit 0 10 l e d o -2 10 m b a l -4 s 10 Reflectivity Reflectivity 1 -6 H-Si H-Si 10 -8 10 SAM-1 SAM-1 -10 10 SAM-2 SAM-2 -12 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 1 - 1 q (Å q (Å ) •At 1 st dip, the 2 scattered plane-waves from the top and bottom interfaces have a λ /2 path-length difference (or π phase difference). •Modulation period -> film thickness Range: 1 to 100 nm •Modulation Amplitude -> relative electron density of film •Modulation damping -> roughness of interface(s) Range: < 2 nm

  9. X-Ray Reflectivity Analysis Fundamentals 2 R ( q ) = R F ( q ) | Φ ( q ) | Kinematical approach: q = 4 π sin θ / λ Φ ( q ) = 1 d ρ iqz dz e ∫ θ θ dz ρ ∞ R ( q ) 1 slab 2 e 2 2 σ − q − iqt R F ( q ) = (1 − b ) + be model ρ = e - density, b = ρ F / ρ Si, σ = σ s = σ I = (rms) roughness, t = film thickness Dynamical approach: Parratt’s recursive formulation

  10. X-ray Standing Wave Fundamentals Superposition of 2 Plane-Waves E T = E 0 e 2 π i ( K 0 • r − ν t ) + E R e 2 π i ( K R • r − ν t ) SW Intensity: 2 I = E T = I 0 + I R + 2 I 0 I R cos( v − 2 π Qz ) SW Period: D = 1 λ = Q 2sin θ SW Vector: Q = K R − K 0

  11. X-ray Standing Wave Generated by Reflection λ XSW Period: D = 2sin θ I max − I min Fringe Visibility: V = I max + I min XSW Generated by Strong Reflection: R=1 → V = 1 1. Dynamical Bragg Diffraction: D = d-spacing a) Single crystal d = 1 to 10 Å surface structure b) Multilayer (LSM) d = 20 to 200 Å ultrathin organic film 2. Total External Reflection: D = 70 Å to 1 µ m diffuse double-layer

  12. XSW Generated by Dynamical Bragg Diffraction from Single Xtal I = I 0 [1 + R + 2 R cos( v − 2 π H • r )] H • r = Δ d d k k H 0 XSW XSW π phase shift → d/2 inward shift Low-angle side → Nodes on diffraction planes Hi-angle side → Antinodes on diffraction planes XSW Fluorescence Yield θ I ( θ , r ) ρ ( r ) d r Y ( θ ) = ∫ [ ] ( ) Crystal Y( θ ) = 1 + R( θ )+ 2f H R( θ )cos v( θ )-2 π P H d f H : Coherent Fraction: Amplitude: 0 --> 1 π 1 P H : Coherent Position: Phase : 0 --> 1 Phase v H th Fourier Comp. of the fluorescence-selected R atom distribution ρ ( r ). 0 0 Angle θ

  13. XSW analysis of strain in a buried heteroepitaxial film Can measure strain down to the level of 1 atomic layer. HRXRD needs > 10 layers Ge K α Si K α Si cap Si(001) 1 ML Ge Cap Ge layer Si(001) Si(001) Substrate substrate [001] ε ⊥ = − 2 c 12 ε || c - [110] 11 [110]

  14. X-Ray Experimental Setup X-Ray Experimental Setup 5ID-C, DND-CAT Advanced Photon Source, Argonne National Lab X-ray detector Fluorescence slits Solid-state fluorescence detector Horizontal focussing mirrors Sample Slits e - Ion chambers Synchrotron ring LN -cooled Si(111) 2 double crystal monochromator Undulator DuPont-Northwestern-Dow Collaborative Access Team

  15. Total External Reflection Total External Reflection X-ray Standing Waves X-ray Standing Waves n = 1 n = 1 - δ - i β z = 0 Fresnel Theory : θ − θ 2 − 2 δ − 2 i β 1/ 2 ( ) E R = E R e iv = z = 2D C θ + θ 2 − 2 δ − 2 i β 1/ 2 E 0 E 0 ( ) R E − Field Intensity : ( ) = 1 + R + 2 R cos ν − 2 π Qz ( ) I θ , z ν Q = 2sin θ λ Critical Period : Normalized Incident Angle - θ / θ C  80Å for Au  D C = λ π = =  2 θ C 2 r e N e  200Å for Si 

  16. LB Multilayer Film / Au Mirror Wang, Bedzyk, Penner, Caffrey Nature (1991). Raw TER-XSW Data Zn K α ZnA R x4 2 ω TA 160 Å Au Zn Fluorescence Yield ZnA 8 ω TA 500 Å Au ZnA 14 ω TA 900 Å Au Y( θ )= ∫ ρ (z) I( θ ,z) dz Angle θ (mrad)

  17. Multilayer X-ray Mirror -> Nanometer Variable Period XSW • Si / Mo Layered -Synthetic Microstructure made by DC magnetron sputtering • Large d-spacing (d = 22 nm) provides XSW periods of D = 5 - 20 nm • Top Si surface w/ native oxide SiO x supports primer layer for self-assembly Hg Hg Hg Hg Hg Hg Hg _ _ 20.0 _ _ _ _ _ _ _ _ _ + + + + + + + + + + + D xsw = NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 13.0 nm 8.9 Si/Mo 6.4 multilayer x-ray mirror Si substrate 5.1 12.4 keV @NSLS/x15a Nov. 2002

  18. Simple Test Case Evaluation of Variable Period XSW Hg modeled as a 0.5 nm thick Hg Hg Hg Hg Hg Hg Hg _ _ slab at the substrate surface Hg-polyU _ _ _ _ _ _ _ _ _ + + + + + + + + + + + NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 Si/Mo multilayer x-ray mirror Si substrate 12.4 keV @NSLS/x15a Nov. 2002

  19. Hg modeled as slab on top of NH 3 + layer 4 t = 0.5 nm Hg L α Fluorescence Yield (CPS) 2 t = 10 nm 3 1.5 2 1 1 Reflectivity 0 0.5 -1 0 -2 0.02 0.04 0.06 0.08 0.1 0.12 Q (1/Å) 12.4 keV @NSLS/x15a Nov. 2002 RNA is laying flat down on surface, not coiled

  20. Mercurated Poly U The RNA molecule → mercurated Poly-uridylic Acid Potassium salt • Molecular weight: 1,400,000 - 1,700,000 • link number: 2382 - 2905 o C 9 N 2 O 8 H 9 KPHgCl HgCl Cl Hg Cl Hg Cl Hg H (Hg replaced H) (Hg replaced H) O N H N Unit weight: 579.28 o CH 2 O P O O Concentration: 47 µ g/mL H H O- H H K+ one Hg atom per units OH

  21. X-ray Nanoscale Profiling of Layer-by-Layer Assembled Metal/Organo-Phosphonate Films Libera, Gurney, Nguyen, Hupp, Liu, Conley, Bedzyk Langmuir (2004) 4 Hf O O • Nanoporous molecular thin films based on Porphyrin single- and multi-layer O P molecular membranes. Developed for R 3 biological sensor application. • Self-assembly using the metal- O P phosphonate scheme. Zr O O 2 Zr • X-ray characterization of Films 1. (a) thickness and density - XRR O O 1 2. (b) z atom-profile of metal atom O P layers - XSW 3. (c) areal packing density by R = alkane chain coverage measurements - XRF = porphyrin = porphyrin square

  22. XSW Analysis of 8 Layer Porphyrin Film 20.0 nm Y (a) Zr z 0 =0.8 nm σ =0.4 nm Por. ρ Zr C Zr = 0.8 Hf Por. Normalized Fluorescence Yield Hf 2 Por. C Y = 0.6 ρ Y 1 (b) Y z 0 =18.5 nm σ =0.8 nm Hf 2 1 Por. 19 Hf Por. (c) Hf Hf ρ Hf C Hf = 1.0 Por. 1 18 Hf C Hf = 0.0 Por. 2.5 nm Hf Por. Reflectivity 0 nm Zr SiO 2 surface (d) Si Mo q ( Å -1 ) Si/Mo multilayer substrate

  23. X-ray E-field Intensity Surface for sample A8 t ( ) ( ) dz XSW Fluorescense Yield : Y ( θ ) = I θ , z ρ z ∫ 0 ( ) = distributionof fluorescent species ρ z distance above substrate - nm E-field Intensity i n c i d e n t a n g l e - m r a d resonant cavity E-field enhancement EFI > 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend