the tutte polynomial its applications and generalizations
play

The Tutte polynomial, its applications and generalizations Sergei - PDF document

University of South Alabama The Tutte polynomial, its applications and generalizations Sergei Chmutov The Ohio State University, Mansfield Thursday, April 15, 2010 3:30 4:30 p.m. Chromatic polynomial C ( q ) := # of proper colorings of


  1. University of South Alabama The Tutte polynomial, its applications and generalizations Sergei Chmutov The Ohio State University, Mansfield Thursday, April 15, 2010 3:30 — 4:30 p.m.

  2. Chromatic polynomial C Γ ( q ) := # of proper colorings of V (Γ) in q colors ( q ) = q ( q − 1)( q 2 − 3 q + 3) Example. C q = 2 : Properties: C Γ = C Γ − e − C Γ /e , C Γ 1 ⊔ Γ 2 = C Γ 1 · C Γ 2 , C • = q. � � S := V (Γ) → { 1 , . . . , q } � � � � C Γ ( q ) = 1 − δ ( σ ( a ) , σ ( b )) σ ∈ S ( a,b ) ∈ E (Γ) Dichromatic polynomial � � Z Γ ( q, v ) := (1 + vδ ( σ ( a ) , σ ( b ))) σ ∈ S ( a,b ) ∈ E (Γ) � q k ( F ) v e ( F ) . C Γ ( q ) = Z Γ ( q, − 1) . Z Γ ( q, v ) = F ⊆ E (Γ) Properties: Z Γ = Z Γ − e + vZ Γ /e , Z Γ 1 ⊔ Γ 2 = Z Γ 1 · Z Γ 2 , Z • = q.

  3. The Tutte polynomial Let • Γ be a graph; • v (Γ) be the number of its vertices; • e (Γ) be the number of its edges; • k (Γ) be the number of components of Γ; • r (Γ) := v (Γ) − k (Γ) be the rank of Γ; • n (Γ) := e (Γ) − r (Γ) be the nullity of Γ; � ( x − 1) r (Γ) − r ( F ) ( y − 1) n ( F ) T Γ ( x, y ) := F ⊆ E (Γ) Z Γ ( q, v ) = q k (Γ) v r (Γ) T Γ (1 + qv − 1 , 1 + v ) Properties. T Γ = T Γ − e + T Γ /e if e is neither a bridge nor a loop ; T Γ = xT Γ /e if e is a bridge ; T Γ = yT Γ − e if e is a loop ; T Γ 1 ⊔ Γ 2 = T Γ 1 · Γ 2 = T Γ 1 · T Γ 2 for a disjoint union, Γ 1 ⊔ Γ 2 and a one-point join, Γ 1 · Γ 2 ; T • = 1 . T Γ (1 , 1) is the number of spanning trees of Γ ; T Γ (2 , 1) is the number of spanning forests of Γ ; T Γ (1 , 2) is the number of spanning connected subgraphs of Γ ; T Γ (2 , 2) = 2 | E (Γ) | is the number of spanning subgraphs of Γ .

  4. The Potts model C.Domb (1952). q = 2 the Ising model; W.Lenz (1920). Atoms are located at the sites of vertices V (Γ). Nearest neighbors are indicated by edges E (Γ). An atom exists in one of q different states ( spins ). A state , σ ∈ S , is an assignments of spins to all vertices V (Γ). Neighboring atoms interact with each other only is their spins are the same. The energy of the interaction is − J ( coupling constant ). The model is called ferromagnetic if J > 0 and antiferromag- netic if J < 0. Energy of a state σ ( Hamiltonian ), � H ( σ ) = − J δ ( σ ( a ) , σ ( b )) . ( a,b ) ∈ E (Γ) Boltzmann weight of σ : � � � � e − βH ( σ ) = e Jβδ ( σ ( a ) ,σ ( b )) = 1+( e Jβ − 1) δ ( σ ( a ) , σ ( b )) , ( a,b ) ∈ E (Γ) ( a,b ) ∈ E (Γ) 1 where the inverse temperature β = κ T , T is the temperature, κ = 1 . 38 × 10 − 23 joules/Kelvin is the Boltzmann constant . The Potts partition function � Z Potts e − βH ( σ ) = Z Γ ( q, e Jβ − 1) := Γ σ ∈ S ferromagnetic unphysical region region v = e Jβ − 1 −1 0 antiferromagnetic

  5. P ( σ ) := e − βH ( σ ) /Z Γ . Probability of a state σ : Expected value of a function f ( σ ): � � f ( σ ) e − βH ( σ ) /Z Γ . � f � := f ( σ ) P ( σ ) = σ σ Expected energy: H ( σ ) e − βH ( σ ) /Z Γ = − d � � H � = dβ ln Z Γ . σ Example. Γ = � . �� � n vertices Z Γ = qv n − 1 (1 + qv − 1 ) n − 1 = q ( q + v ) n − 1 T Γ = x n − 1 , = q ( q − 1 + e βJ ) n − 1 . − Je βJ Expected energy: � H � = ( n − 1) q − 1 + e βJ . Expected energy per atom as n → ∞ : − Je βJ � H � lim = q − 1 + e βJ . n n →∞ T → ∞ ( β → 0): The energy per atom → − J/q . T → 0 ( β → ∞ ). J < 0 (antiferromagnetic): The energy per atom → 0. In general, e βJ → 0 and the partition function → Z Γ ( q, − 1) = C Γ ( q ). J > 0 (ferromagnetic): The energy per atom → − J .

  6. Morwen Thistlethwaite (1987) Up to a sign and a power of t the Jones polynomial V L ( t ) of an alternating link L is equal to the Tutte polyno- mial T Γ L ( − t, − t − 1 ). L Γ L V L ( t ) = t + t 3 − t 4 T Γ L ( x, y ) = y + x + x 2 = − t 2 ( − t − 1 − t + t 2 ) T Γ L ( − t, − t − 1 ) = − t − 1 − t + t 2

  7. The Kauffman bracket Let L be a virtual link diagram. A state S is a choice of A -splitting either A - or B -splitting at every classical crossing. α ( S ) = #(of A -splittings in S ) B -splitting β ( S ) = #(of B -splittings in S ) δ ( S ) = #(of circles in S ) � A α ( S ) B β ( S ) d δ ( S ) − 1 [ L ]( A, B, d ) := S J L ( t ) := ( − 1) w ( L ) t 3 w ( L ) / 4 [ L ]( t − 1 / 4 , t 1 / 4 , − t 1 / 2 − t − 1 / 2 ) Example ( α, β, δ ) (3 , 0 , 1) (2 , 1 , 2) (2 , 1 , 2) (1 , 2 , 1) (2 , 1 , 2) (1 , 2 , 1) (1 , 2 , 3) (0 , 3 , 2) [ L ] = A 3 + 3 A 2 Bd + 2 AB 2 + AB 2 d 2 + B 3 d ; J L ( t ) = 1

  8. Graphs on surfaces Ribbon graphs A ribbon graph G is a surface represented as a union of vertices- discs and edges-ribbons • discs and ribbons intersect by disjoint line segments, • each such line segment lies on the boundary of precisely one vertex and precisely one edge; • every edge contains exactly two such line segments. ✎☞ ✎☞ ✎☞ ✎☞ + + − − ✍✌ ✍✌ ✍✌ ✍✌ = ✎☞ ✎☞ − − ✍✌ ✍✌

  9. The Bollob´ as-Riordan polynomial Let • F be a ribbon graph; • v ( F ) be the number of its vertices; • e ( F ) be the number of its edges; • k ( F ) be the number of components of F ; • r ( F ) := v ( F ) − k ( F ) be the rank of F ; • n ( F ) := e ( F ) − r ( F ) be the nullity of F ; • bc( F ) be the number of boundary components of F ; • s ( F ) := e − ( F ) − e − ( F ) . 2 R G ( x, y, z ) := � x r ( G ) − r ( F )+ s ( F ) y n ( F ) − s ( F ) z k ( F ) − bc( F )+ n ( F ) F Relations to the Tutte polynomial. R G ( x − 1 , y − 1 , 1) = T G ( x, y ) If G is planar (genus zero): R G ( x − 1 , y − 1 , z ) = T G ( x, y )

  10. Example. ✎☞ ✎☞ ✎☞ ✎☞ + − − − ✍✌ ✍✌ ✍✌ ✍✌ ✎☞ ✎☞ ✎☞ − − − ✍✌ ✍✌ ✍✌ ( k, r, n, bc , s ) (1 , 1 , 1 , 2 , 1) (1 , 1 , 0 , 1 , 0) (1 , 1 , 0 , 1 , 0) (2 , 0 , 0 , 2 , − 1) ✎☞ ✎☞ ✎☞ ✎☞ + + + + ✎☞ ✎☞ ✍✌ ✍✌ ✍✌ ✍✌ − − ✍✌ ✍✌ ✎☞ ✎☞ − − ✍✌ ✍✌ (1 , 1 , 2 , 1 , 1) (1 , 1 , 1 , 1 , 0) (1 , 1 , 1 , 1 , 0) (2 , 0 , 1 , 2 , − 1) • r ( F ) := v ( F ) − k ( F ); • n ( F ) := e ( G ) − r ( F ); • bc( F ) is the number of boundary components; • s ( F ) := e − ( F ) − e − ( F ) . 2 R G ( x, y, z ) = x + 2 + y + xyz 2 + 2 yz + y 2 z .

  11. Construction of a ribbon graph from a virtual link diagram A L B B 1 1 3 2 2 3 State s Diagram ✎☞ 1 + ✍✌ ✎☞ 1 2 − 1 ✍✌ ✎☞ 3 − ✍✌ 2 3 2 3 Attaching planar bands Replacing bands by arrows ✎☞ ✎☞ ✎☞ 1 — ✍✌ + ; 2 — ✍✌ − ; 3 — ✍✌ − 1 1 2 2 1 3 2 3 3 2 1 3 Untwisting state circles Pulling state circles apart 1 ✎☞ + ✎☞ ✍✌ − ✍✌ 2 3 ✎☞ − ✍✌ Forming the ribbon graph G s L

  12. Theorem Let L be a virtual link diagram with e classical crossings, G s L be the signed ribbon graph corresponding to a state s , and v := v ( G s L ) , k := k ( G s L ) . Then e = e ( G s L ) and � � � [ L ]( A, B, d ) = A e x k y v z v +1 R G s � L ( x, y, z ) . � x = Ad B , y = Bd A , z = 1 d Idea of the proof. One-to-one correspondence between states s ′ of L and spanning subgraphs F ′ of G s L : An edge e of G s L belongs to the spanning subgraph F ′ if and only if the corresponding crossing was split in s ′ differently comparably with s .

  13. Further developments Iain Moffatt: • Knot invariants and the Bollob´ as-Riordan polynomial of embedded graphs , European Journal of Combinatorics, 29 (2008) 95-107. arXiv:math/0605466 . • Partial duality and Bollob´ as and Riordan’s ribbon graph polynomial , Discrete Mathematics, 310 (2010) 174-183. arXiv:0809.3014 . • A characterization of partially dual graphs . arXiv:0901.1868 . Fabien Vignes-Tourneret: • The multivariate signed Bollob´ as-Riordan polynomial , Dis- crete Mathematics, 309 (2009) 5968-5981. arXiv:0811.1584 . • (joint with T. Krajewski, V. Rivasseau) Topological graph polynomials and quantum field theory, Part II: Mehler ker- nel theories . arXiv:0912.5438 . (non-commutative Grosse- Wulkenhaar quantum field theory)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend