on the gibbs states of the non critical
play

On the Gibbs states of the non-critical Potts model on Z 2 Joint - PowerPoint PPT Presentation

On the Gibbs states of the non-critical Potts model on Z 2 Joint work with H. Duminil-Copin, D. Ioffe, and Y. Velenik. Loren Coquille Hausdorff Center fr Mathematik, Universitt Bonn July 10, 2014 Loren Coquille (HCM-Bonn) MAC2 Workshop


  1. On the Gibbs states of the non-critical Potts model on Z 2 Joint work with H. Duminil-Copin, D. Ioffe, and Y. Velenik. Loren Coquille Hausdorff Center für Mathematik, Universität Bonn July 10, 2014 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 1 / 34

  2. Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 2 / 34

  3. Finite volume measures Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 3 / 34

  4. Finite volume measures Ising model Spin = state of a site x ∈ Z d σ x ∈ {− 1 , + 1 } Λ Hamiltonian = energy of a spin configuration � •• or •• contribution = -1 � H ( σ ) = − σ x σ y → •• or •• contribution = +1 x ∼ y Gibbs measure on {− 1 , + 1 } Λ : P Λ , T ( σ ) = 1 � − 1 � Z exp T H ( σ ) , T = temperature Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 4 / 34

  5. Finite volume measures Ising model / Potts model Spin = state of a site x ∈ Z d σ x ∈ {− 1 , + 1 } σ x ∈ { 1 , 2 . . . , q } Λ Hamiltonian = energy of a spin configuration � •• or •• contribution = -1 � H ( σ ) = − σ x σ y → •• or •• contribution = +1 x ∼ y � •• or •• or •• or . . . contribution = -1 � H ( σ ) = − δ σ x = σ y → •• or •• or •• or . . . contribution = 0 x ∼ y P Λ , T ( σ ) = 1 � − 1 � Z exp T H ( σ ) , T = temperature Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 4 / 34

  6. Finite volume measures Boundary conditions � � Ising : H ω ( σ ) = − σ x σ y − σ x ω y x ∼ y x ∈ Λ , y ∈ ∂ Λ x ∼ y � � Potts : H ω ( σ ) = − δ σ x = σ y − δ σ x = ω y x ∼ y x ∈ Λ , y ∈ ∂ Λ x ∼ y Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 5 / 34

  7. Finite volume measures Boundary conditions � � Ising : H ω ( σ ) = − σ x σ y − σ x ω y x ∼ y x ∈ Λ , y ∈ ∂ Λ x ∼ y � � Potts : H ω ( σ ) = − P ω δ σ x = σ y − δ σ x = ω y � Λ , T x ∼ y x ∈ Λ , y ∈ ∂ Λ x ∼ y Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 5 / 34

  8. Phase transition Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 6 / 34

  9. Phase transition Monochromatic boundary conditions Ising : P + Λ , T and P − Λ , T Potts : P i Λ , T , with i = 1 , . . . , q . T ≫ 1 T ≃ 0 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 7 / 34

  10. Phase transition Phase transition Ising Potts There exists T c ( d , q ) ∈ ( 0 , ∞ ) s.t. There exists T c ( d ) ∈ ( 0 , ∞ ) s.t. If T > T c then If T > T c then Λ ↑ Z d E + Λ ↑ Z d P i lim Λ , T ( σ 0 ) = 0 lim Λ , T ( σ 0 = i ) = 1 / q If T < T c then If T < T c then Λ ↑ Z d E + Λ ↑ Z d P i lim Λ , T ( σ 0 ) > 0 lim Λ , T ( σ 0 = i ) > 1 / q Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 8 / 34

  11. Phase transition Phase transition Ising Potts There exists T c ( d ) ∈ ( 0 , ∞ ) s.t. There exists T c ( d , q ) ∈ ( 0 , ∞ ) s.t. If T > T c then If T > T c then E + P i T ( σ 0 ) = 0 T ( σ 0 = i ) = 1 / q If T < T c then If T < T c then − E − T = E + P i T ( σ 0 ) > 0 T ( σ 0 = i ) > 1 / q Remarks Existence of the monochromatic phases : FKG inequality for Ising, coupling with the random-clusters model for Potts. They are translation invariant. Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 8 / 34

  12. Phase transition Phase transition Ising Potts There exists T c ( d ) ∈ ( 0 , ∞ ) s.t. There exists T c ( d , q ) ∈ ( 0 , ∞ ) s.t. If T > T c then If T > T c then E + P i T ( σ 0 ) = 0 T ( σ 0 = i ) = 1 / q If T < T c then If T < T c then − E − T = E + P i T ( σ 0 ) > 0 T ( σ 0 = i ) > 1 / q Remarks Existence of the monochromatic phases : FKG inequality for Ising, coupling with the random-clusters model for Potts. They are translation invariant. Non-triviality of T c : Peierls in d = q = 2, monotonicity in d and in q . Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 8 / 34

  13. Infinite volume measures Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 9 / 34

  14. Infinite volume measures Infinite volume Gibbs measures Weak limits approach � accumulation points of sequences ( P ω n Λ n ) n � G T = with Λ n ↑ Z d as n → ∞ Weak topology : P ω n E ω n Λ n → P ⇔ Λ n ( f ) → E ( f ) ∀ f local Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 10 / 34

  15. Infinite volume measures Infinite volume Gibbs measures Weak limits approach � accumulation points of sequences ( P ω n Λ n ) n � G T = with Λ n ↑ Z d as n → ∞ Weak topology : P ω n E ω n Λ n → P ⇔ Λ n ( f ) → E ( f ) ∀ f local Dobrushin-Lanford-Ruelle approach � P : for all Λ ⋐ Z d , and P -a.e. ω, � ˜ G T = P ( σ | σ = ω on Λ c ) = P ω Λ ( σ ) Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 10 / 34

  16. Infinite volume measures Infinite volume Gibbs measures Weak limits approach � accumulation points of sequences ( P ω n Λ n ) n � G T = with Λ n ↑ Z d as n → ∞ Weak topology : P ω n E ω n Λ n → P ⇔ Λ n ( f ) → E ( f ) ∀ f local Dobrushin-Lanford-Ruelle approach � P : for all Λ ⋐ Z d , and P -a.e. ω, � ˜ G T = P ( σ | σ = ω on Λ c ) = P ω Λ ( σ ) ˜ G T is a simplex, whose extremal elements belong to G T ! Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 10 / 34

  17. Known results Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 11 / 34

  18. Known results Known results for the Ising model 1972 For 0 < T ≪ T c and d = 2 resp. 3, [Galavotti] [Dobrushin] P ± = ( P + + P − ) / 2 , P ± is not translation invariant + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + O ( √ n ) + + + O (1) + + + + − + + + − − − − − − − − − − − − − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − − n n Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 12 / 34

  19. Known results Known results for the Ising model 1980-81 In d = 2 for all T > 0 [Aizenman] [Higuchi] α P + T + ( 1 − α ) P − � � G T = T , with α ∈ [ 0 , 1 ] T ≥ T c ⇒ G T = { P T } • G T = [ P − T , P + T < T c ⇒ T ] (Proof by contradiction, in the infinite volume setting, gives little information about large but finite volumes.) Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 13 / 34

  20. Known results Known results for the Ising model 1979 In d = 2 and for T ≪ T c [Higuchi] 2005 In d = 2 and T < T c [Greenberg, Ioffe] Under diffusive scaling, the Dobrushin interface weakly converges to a Brownian bridge. Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 14 / 34

  21. Known results Known results for the Potts model 1986 For d ≥ 2, q > q 0 ( d ) , and T < T c [Martirosian] � q i = 1 α i P i If P ∈ G T is translation invariant, then P = T . Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 15 / 34

  22. Known results Known results for the Potts model 1986 For d ≥ 2, q > q 0 ( d ) , and T < T c [Martirosian] � q i = 1 α i P i If P ∈ G T is translation invariant, then P = T . 2008 For d = 2, and T < T c (*) [Campanino, Ioffe, Velenik] Under diffusive scaling, the Dobrushin interface weakly converges to a Brownian bridge. Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 15 / 34

  23. New result Outline of the talk Finite volume measures 1 Phase transition 2 3 Infinite volume measures Known results 4 New result 5 Main ideas of the proof 6 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 16 / 34

  24. New result Characterization of G T for the Potts model on Z 2 Theorem (C., Duminil-Copin, Ioffe, Velenik) For q ≥ 2 and T < T c ( q ) , �� q � q � i = 1 α i P i G T = T , with i = 1 α i = 1 Loren Coquille (HCM-Bonn) MAC2 Workshop – Paris July 10, 2014 17 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend