finding tutte paths in linear time
play

Finding Tutte Paths in Linear Time Philipp Kindermann Universit - PowerPoint PPT Presentation

Finding Tutte Paths in Linear Time Philipp Kindermann Universit at W urzburg joint work with Therese Biedl University of Waterloo Tutte Paths Planar graph G Tutte Paths X Planar graph G Tutte Paths X Planar graph G Y Tutte Paths X


  1. Tutte paths X Planar graph G Y T int -path: P – T SDR -path – visits all ext. vtcs – all comp. assigned to int. vtcs α Tutte path: Path from X to Y via α Every comp. attached to ≤ 3 vtcs of P Every outer comp. attached to 2 vtcs of P T SDR -path: Tutte path + System of Distinct Representatives: Injective assignment of comp. to attachment pts

  2. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  3. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] int. . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  4. What is known? X Y [Tutte ’77] G 2-conn., X , Y , α on outer face ⇒ Tutte path [Thomassen ’83] α G 2-conn., X , Y , α on outer face ⇒ Tutte path [Sanders ’96] G 2-conn., X , Y , α on outer face ⇒ Tutte path T int [Gao, Richter & Yu ’95, ’06] int. . . . in O ( n ) time G 3-conn., X , Y , α on outer face ⇒ T SDR -path ( = Hamil. path) [Chiba & Nishizeki ’89] G 4-conn. ⇒ Tutte path in O ( n ) time [Schmid & Schmidt ’15] . . . in O ( n 2 ) time [Schmid & Schmidt ’18] . . . in O ( n 2 ) time

  5. Triangulated Graphs X Y α

  6. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  7. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  8. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  9. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time.

  10. Triangulated Graphs X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  11. Triangulated Graphs k vertices X Y α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  12. Triangulated Graphs k vertices X Y 2 k − 5 int. faces α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  13. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  14. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  15. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  16. Triangulated Graphs k vertices X Y 2 k − 5 int. faces k − 3 int. vtcs k − 2 int. edges in P α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  17. Substitution Trick

  18. Substitution Trick

  19. Substitution Trick

  20. Substitution Trick X Y α

  21. Substitution Trick X Y α

  22. Substitution Trick X Y α

  23. Substitution Trick X Y α

  24. Substitution Trick

  25. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  26. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  27. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time.

  28. Triangulated graphs k vertices X Y 2 k − 5 faces k − 2 edges in P − α k − 3 int. vtcs α [Asano, Kikuchi & Saito ’85] 4-conn. triangulation ⇒ Hamiltonian path in O ( n ) time. triangulation ⇒ Tutte path in O ( n ) time. T int -

  29. Corner-3-connectivity int. 3-conn.

  30. Corner-3-connectivity int. 3-conn.

  31. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X α

  32. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X α

  33. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  34. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  35. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  36. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  37. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  38. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  39. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  40. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α

  41. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α G is corner-3-conn., X , Y , α on outer face ⇒ T int -path

  42. Corner-3-connectivity int. 3-conn. corner-3-conn. Y X side α G is corner-3-conn., X , Y , α on outer face ⇒ T int -path

  43. Case 1: Outer Face is Triangle

  44. Case 1: Outer Face is Triangle Y X α

  45. Case 1: Outer Face is Triangle Y X α

  46. Case 1: Outer Face is Triangle Y X α

  47. Case 2: left-right cutting pair Y X α

  48. Case 2: left-right cutting pair Y X α

  49. Case 2: left-right cutting pair Y X G t G t α

  50. Case 2: left-right cutting pair Y X G t G t G b G b α

  51. Case 2: left-right cutting pair Y X G t G t G b G b α

  52. Case 2: left-right cutting pair Y X Y X G t G t α G b G b α

  53. Case 2: left-right cutting pair Y X Y X G t G t α G b G b α

  54. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  55. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  56. Case 2: left-right cutting pair Y X Y X G t G t α Y X G b G b α α

  57. Case 3: top-right cutting pair Y X α

  58. Case 3: top-right cutting pair Y X G b G b α

  59. Case 3: top-right cutting pair Y X G t G t G b G b α

  60. Case 3: top-right cutting pair Y X G t G t G b G b α

  61. Case 3: top-right cutting pair Y X G t G t Y X G b G b α α

  62. Case 3: top-right cutting pair Y X G t G t Y X G b G b α α

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend