the study of magnetic field for comet experiment
play

The study of magnetic field for COMET experiment Weichao Yao - PowerPoint PPT Presentation

The study of magnetic field for COMET experiment Weichao Yao 12/23/2019 Year-End Presentation Contents The magnet used in particle physics experiment Introduction to motion of charged particle in magnetic field The optimization of


  1. The study of magnetic field for COMET experiment Weichao Yao 12/23/2019 Year-End Presentation

  2. Contents • The magnet used in particle physics experiment • Introduction to motion of charged particle in magnetic field • The optimization of muon target of COMET experiment • Summary

  3. Introduction to LHC & BESIII • Main Dipoles • there is a 27 km long underground tunnel, the Main Bends(MBs, dipole magnets) fill more than 2/3 of the ring • Nominal magnetic filed 8.33T, ultimate field 9 T. • ATLAS • 1 Barrel Toroid, 2 End Cap Toroids and 1 1T SC magnetic Central Solenoid • 2T inner detector • 1T for muon detectors • 4.1T peak in winding

  4. The magnet used In COMET Experiment 5T 1 1 2 2 3T 3T 3 3 4 Here will be 5 4 introduced in this slide 5 ~1.08T 6 1T 6

  5. The motion of charged particle in magnetic field

  6. The distribution of magnetic field Item Material aluminium Shape flat disk Radius 100 mm disk Thickness 200 μ m Number of disks 17 Disk spacing 50 mm 3.214 • The total length of stopping target section is 5m • The default position of Stopping target is 3.214 m • Position? uniform field, slope field

  7. <latexit sha1_base64="LNr0+I2G7HTusGCJcW+VwkdM=">ACIXicbVDLSsNAFJ3UV62vqEs3g0VwVRIf2I1Q6sZlhb6kCWEymbRDJw9nJoUS8ytu/BU3LhTpTvwZJ20Wr0wzOGc7n3HjdmVEjD+NRK6tr6xvlzcrW9s7unr5/0BVRwjHp4IhFvO8iQRgNSUdSyUg/5gQFLiM9d3yT670J4YJGYVtOY2IHaBhSn2IkFeXo9YmTWo8ZtHyOcGq5EfPENFBf2s6y9D67i+UAObGmPBY0Q+wmTl61agZ84J/gVmAKiq5egzy4twEpBQYoaEGJhGLO0UcUkxI1nFSgSJER6jIRkoGKACDudX5jBE8V40I+4eqGEc/ZnR4oCke+tnAGSI7Gs5eR/2iCRft1OaRgnkoR4MchPGJQRzOCHuUESzZVAGFO1a4Qj5BKRKpQKyoEc/nkv6B7VjPa5d3F9VGs4ijDI7AMTgFJrgCDXALWqADMHgCL+ANvGvP2qv2oc0W1pJW9ByCX6V9fQNqFqWE</latexit> <latexit sha1_base64="bseJNQtCw1AdLBHemcAzxXJ4U=">ACKHicbVDLSgMxFM34rPVdekmWARXZcYHuhFL3bisYLXSKSWTZmwyYzJnUIZ5nPc+CtuRBTp1i8x087C14HA4ZxzubkniAU34LpjZ2Z2bn5hsbRUXl5ZXVuvbGxemyjRlLVoJCLdDohgivWAg6CtWPNiAwEuwnuz3P/Zsi04ZG6glHMupLcKR5ySsBKvcrZEPs0MtiHAQOC/VATmuJ9P+ZYZuntA25kp+2pKrHNGq6KbJbmZq9SdWvuBPgv8QpSRQWavcqr349oIpkCKogxHc+NoZsSDZwKlpX9xLCY0HtyxzqWKiKZ6aTQzO8a5U+DiNtnwI8Ub9PpEQaM5KBTUoCA/Pby8X/vE4C4Uk35SpOgCk6XRQmAkOE89Zwn2tGQYwsIVRz+1dMB8S2Arbsi3B+3yX3K9X/MOakeXh9V6o6ijhLbRDtpDHjpGdXSBmqiFKHpEz+gNvTtPzovz4Yyn0RmnmNlCP+B8fgHdmKXk</latexit> <latexit sha1_base64="B0qNr3qsMeMDF3xy16p4EN5Cp+k=">ACMHicbVDLSgMxFM3UV62vUZdugkVwVa1+FgIpS50WaEvaEvJpJk2NJkZk0yhDPNJbvwU3Sgo4tavMNMZpLUeCJx7zr3c3GP7jEplW9GZmV1bX0ju5nb2t7Z3TP3D5rSCwQmDewxT7RtJAmjLmkoqhp+4IgbjPSsc3sd+aECGp59bV1Cc9joYudShGSkt987Z+3XUEwmEJdn0KROonklrmFScziJwgdYXfAhT7S+mbcK1gxwmRTkgcpan3zuTvwcMCJqzBDUnaKlq96IRKYkaiXDeQxEd4jIako6mLOJG9cHZwBE+0MoCOJ/RzFZyp8xMh4lJOua07OVIj+deLxf+8TqCcy15IXT9QxMXJIidgUHkwTg8OqCBYsakmCAuq/wrxCOk0lM4NwvhKsb578nLpFkqFM8K5ftyvlJN48iCI3AMTkERXIAKuAM10AYPIX8A4+jCfj1fg0vpLWjJHOHIFGN8/DiOpvQ=</latexit> <latexit sha1_base64="YEqH2UrFamNqwm082dq7uVpSspE=">ACAHicbVDLSsNAFJ34rPUVdeHCzWARXJWkFh8LodSNywr2AW0sk+mkHTqTxJlJoYRs/BU3LhRx62e482+cpEHUeuDC4Zx7ufceN2RUKsv6NBYWl5ZXVgtrxfWNza1tc2e3JYNIYNLEAQtEx0WSMOqTpqKkU4oCOIuI213fJX67QkRkgb+rZqGxOFo6FOPYqS01Df37+E1i97nkA45nByF1eSJBZJ3yxZSsDnCd2TkogR6NvfvQGAY48RVmSMqubYXKiZFQFDOSFHuRJCHCYzQkXU19xIl04uyB5pZQC9QOjyFczUnxMx4lJOuas7OVIj+dLxf+8bqS8cyemfhgp4uPZIi9iUAUwTQMOqCBYsakmCAuqb4V4hHQWSmdWzEK4SH6/fI8aVXK9km5elMt1ep5HAVwA7BMbDBGaiBa9ATYBAh7BM3gxHown49V4m7UuGPnMHvgF4/0LOPOWVA=</latexit> The motion of charged particle qvB = mv 2 r T = 2 π r = 2 π mv qB = 2 π m v v qB • The period of motion will be changed with magnetic field • The radius slightly larger, and the trajectory length became large • the target design: the gap of start disks should be small and the gap of end disks should be large T Y = X mv ? v cos θ 2 π m Y qB = X mv sin θ • If we set L =X ∙ r, v k qB qB •

  8. Energy deposit in target disks θ • If there is no magnetic field, the initial angle larger than θ , the hit number of particles is zero. The gap between disks more large more better. • The energy loss of electron with 105MeV in Aluminium : • βγ =105MeV/0.51=205.88, dE/dx ≈ -2.18 (MeV/g cm2), so Edep is 2.18 × 2.7= 5.86 MeV/cm: if the thickness is 0.2mm, then edep is 117.72 keV • There magnetic field in this section, the motion of charged particle will be helix

  9. <latexit sha1_base64="W4OM/b/oSgKv39ecA4jFkiU1Hes=">ACOXicbVDLSgMxFM3UV62vqks3wSK4KGWmCroRSt24rGAf0Kklk2ba0GQmJlCGfJbvwLd4IbF4q49QdMH4vaeiBwOdcbu4JBKNKu+6rk1lb39jcym7ndnb39g/yh0cNFScSkzqOWSxbAVKE0YjUNdWMtIQkiAeMNIPh7cRvjohUNI4e9FiQDkf9iIYUI2lbr7m8+TGDyXCKYejbuoWfUGkMI9p2Zi0DKtWMmYxIajGgyJciU1Y7r5gltyp4CrxJuTApij1s2/+L0YJ5xEGjOkVNtzhe6kSGqKGTE5P1FEIDxEfdK2NEKcqE46vdzAM6v0YBhL+yINp+riRIq4UmMe2CRHeqCWvYn4n9dOdHjdSWkEk0iPFsUJgzqGE5qhD0qCdZsbAnCktq/QjxAtiRty87ZErzlk1dJo1zyLkrl+8tCpTqvIwtOwCk4Bx64AhVwB2qgDjB4Am/gA3w6z8678+V8z6IZz5zDP7A+fkFwGquHw=</latexit> <latexit sha1_base64="2ywr5fC9OtEoFeDx9Ic4UEjXI0=">ACEnicbVC7SgNBFJ31GeMramkzGISkCbtR0EYIsbGMYB6QjWF2MpsMmZ1dZu4KYdlvsPFXbCwUsbWy82+cJFto4oHLPZxzLzP3eJHgGmz721pZXVvf2Mxt5bd3dvf2CweHLR3GirImDUWoOh7RTHDJmsBsE6kGAk8wdre+Hrqtx+Y0jyUdzCJWC8gQ8l9TgkYqV8ou74iNKn3EztNpy3iQEdpeuVqLvF9Uk1LowYkHK/ULQr9gx4mTgZKaIMjX7hyx2ENA6YBCqI1l3HjqCXEAWcCpbm3ViziNAxGbKuoZIETPeS2UkpPjXKAPuhMiUBz9TfGwkJtJ4EnpkMCIz0ojcV/O6MfiXvYTLKAYm6fwhPxYQjzNBw+4YhTExBCFTd/xXRETEZgUsybEJzFk5dJq1pxzirV2/NirZ7FkUPH6ASVkIMuUA3doAZqIoe0TN6RW/Wk/VivVsf89EVK9s5Qn9gf4AgSud+Q=</latexit> The charged particle in gradient field: Mirror effect • the magnetic moment is considered the lowest- order approximation of the adiabatic invariant • At the reverse point, the ν ⫽ =0. • Magnetic moment is conserved mv 2 mv 2 ν 0 , ⊥ pitch, ⊥ µ = = ν ⊥ 2 B 0 2 B pitch θ • Therefore B ν ⫽ B 0 = sin 2 ( θ ) B pitch • Particles with appropriate angle will mirror in regions of higher B, If θ is too small, particle does not mirror. • Bmax =3T: • If B=1.5T, θ =45 degree; if B=2.1T, then θ =56.8 degree; if B=2.5T, then θ =66 degree • the particle within angle> θ could be reflected. 9

  10. <latexit sha1_base64="hTA/OqKgE8qwMTm69CvIgTdOeUE=">ACQHicbZDBa9swFMbldN26rNvS9riLWBikhwU7K3SXQumg9DQ6WJpC7BpZfk5EZdlIz6VB+E/rZX/Cbjv30kPH2HWnKYkPS7sHgk/fex9P+iWlFAZ9/4fXWnuy/vTZxvP2i82Xr153trbPTFpDkNeyEKfJ8yAFAqGKFDCeamB5YmEUXL5ad4fXYE2olBfcVZClLOJEpngDJ0Vd0afYxsiXCO1GjIJHCGt64Pj2Prvw0wzbsNS1HZQ1zQUCt3winhwlNAVtM05IWhveV1l8adrt/3F0Ufi6ARXdLUadz5HqYFr3JQyCUzZhz4JUaWaRcQt0OKwMl45dsAmMnFcvBRHYBoKbvnJPSrNDuKQL9+EZbkxszxkznDqXnYm5v/640rzD5GVqiyQlB8uSirJMWCzmnSVGiHTM6cYFwL91bKp8wRQse87SAED7/8WJwN+sGH/uDLXvfwqMGxQd6Qt6RHArJPDskJOSVDwskNuSX35Kf3zbvzfnm/l6Mtr8nskJXy/vwFnDWxhA=</latexit> <latexit sha1_base64="5MSBOV6KyAgNd5tJ9C2Su7dEx/A=">ACa3icbVHRShwxFM2M1ura6lYfFPUhdBEs6DKzCvalIArio5auCjvbIZO94wYzmSG5IyxhXvqJfesf9MV/MLO7gqteCJx7zrnc5CQpDAYBP8f27+w8LHxaXG8qfPK6vNL2vXJi81hy7PZa5vE2ZACgVdFCjhtDAskTCTXJ/Vus3D6CNyNUvHBXQz9idEqngDB0VN/8ZAg/olQzTu15bIP9MbZRISrbqaqJg9ct18z1bMzrMVIKIztrP+3jXAIyCo6iHhu6N6k/UZnJ19KcbMVtINx0bcgnIWmdZl3PwbDXJeZqCQS2ZMLwK7FumUXAJVSMqDRSM37M76DmoWAamb8dZVXTXMQOa5todhXTMvpywLDNmlCXOmTEcmtdaTb6n9UpMv/etUEWJoPhkUVpKijmtg6cDoYGjHDnAuBburpQPmcsE3fc0XAjh6ye/BdednjY7lwdtU5Op3Eskm3yleyRkByTE3JBLkmXcPLfW/E2vE3v0V/3t/ydidX3pjPrZKb83Sefr7tU</latexit> <latexit sha1_base64="WvnQbqKJ2DeF6vfICQ18SjY5E=">ACNnicbVDLSgMxFM34tr6qLt0Ei6CbMlMF3QiIG4UBatCp5ZM5o4NzWSG5I5YhvkqN36HOzcuFHrJ5g+EF8HAifnEtyT5BKYdB1n5yR0bHxicmp6dLM7Nz8Qnlx6cIkmeZQ54lM9FXADEihoI4CJVylGlgcSLgMOgc9/IWtBGJOsduCs2Y3SgRCc7QSq3y8Ukr9xHukOYaIgkcISyKXV8otEakGc/9VBR5rSiubANyAp6uD5gGzT0eWLo17VrhVtw/6l3hDUiFDnLbKj36Y8CwGhVwyYxqem2IzZxoFl1CU/MxAyniH3UDUsViM28v3ZB16wS0ijR9ikfX7RM5iY7pxYJMxw7b57fXE/7xGhtFOMxcqzRAUHzwUZJiQnsd0lBoW5TsWsK4FvavlLeZ7Qpt0yVbgvd75b/kolb1Nqu1s63K3v6wjimyQlbJOvHINtkjR+SU1Akn9+SJvJBX58F5dt6c90F0xBnOLJMfcD4+AYDdrOA=</latexit> The calculation of mirror effect Z θ N reflected = F ( θ ) d cos( θ ) π 2 • Because the change with cos( θ ) is same, Z θ N reflected = F 0 − π d cos( θ ) 2 π 2 • F (0- π /2) reflected, the total events is F (- π — π ) Z θ Rate = F 0 , π = 1 d cos( θ ) = 1 2 2 cos( θ ) 2 F − π , π π 2 • From above, the calculation is larger than simulation. • The distribution of particle is uniform with Cos θ , • Because the too small velocity could not be reflected, The calculation is a little di ff erent with simulation (about 1~2 %)

  11. Reflected rate of electron velocity v v z θ mirror e ff ect axis • The definition of the angle θ • Cos θ = v z / v • The maximum v z corresponding to to pitch angle upstream, reflected • if θ > pitch angle, the charged particle could be reflected, Downstream however if the θ is too large, it also could not be reflected θ >40 degree 11

  12. The charged particle motion w/wo gradient field 2T with slope field 2T uniform • The mirror e ffi ciency will be e ff ected by the gradient field • If using the uniform field, the electron with small angle will be lost. The gradient field is necessary

  13. The study of the optimization of stopping target • Purpose: • Increasing the muons yield in stopping target • improving the signal acceptance • Method: • Magnetic field option • The parameters of Stopping target: Number disks, Position, disks gap etc.

  14. The options of Magnetic field • Using the gradient field • The default: center 1.8T, dB/dm=1.343 • Case1: center 2T, gradient < default • Improving the average field during • Case2: center 2.1T, gradient< default the Stopping target • Case3:center 2T, gradient ~> default • Changing the slope rate • Case4: center 2T, gradient > default • Changing the position

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend