the static gravitational potential at fifth order
play

The static gravitational potential at fifth order Andreas Maier - PowerPoint PPT Presentation

The static gravitational potential at fifth order Andreas Maier Los Angeles, 10 December 2019 J. Blmlein, A. Maier, P . Marquard arXiv:1902.11180 J. Blmlein, A. Maier, P . Marquard, G. Schfer, C. Schneider arXiv:1911.04411


  1. The static gravitational potential at fifth order Andreas Maier Los Angeles, 10 December 2019 J. Blümlein, A. Maier, P . Marquard arXiv:1902.11180 J. Blümlein, A. Maier, P . Marquard, G. Schäfer, C. Schneider arXiv:1911.04411

  2. GRAVITATIONAL-WAVE TRANSIENT CATALOG- 1 512 512 FREQUENCY [HZ] 128 z] equency [H 128 z] requency [H 32 GW151012 GW170104 GW150914 GW151226 32 r F F 512 FREQUENCY [HZ] 128 32 GW170608 GW170729 GW170814 GW170809 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 512 FREQUENCY [HZ] 128 32 GW170823 GW170818 GW170817 : BINARY NEUTRON STAR 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 10 20 30 40 TIME [SECONDS] TIME [SECONDS] TIME [SECONDS] LIGO-VIRGO DATA : HTTPS://DOI.ORG/10.7935/82H3-HH23 EINSTEIN’S THEORY S. GHONGE, K. JANI | GEORGIA TECH WAVELET (UNMODELED) 2 / 26

  3. Gravitational waves [LIGO Scientific Collaboration and Virgo Collaboration 2016] ringdown inspiral merger 3 / 26

  4. Gravitational waves [LIGO Scientific Collaboration and Virgo Collaboration 2016] ringdown inspiral merger 4 / 26

  5. Compact binary systems Power counting r r s – • Masses comparable: m ≡ m 1 ∼ m 2 Generalisation to different masses straightforward • Nonrelativistic system: v ≪ 1 • Virial theorem: mv 2 ∼ Gm 2 r Post-Newtonian (PN) expansion : p Combined expansion in v ∼ Gm=r ≪ 1 5 / 26

  6. 6 / 26

  7. 7 / 26

  8. Post-Newtonian expansion Theory status Conservative dynamics, no spin: complete results up to 4PN ( v 8 ) • ADM Hamiltonian formalism [Damour, Jaranowski, Schäfer 2016] • Fokker Lagrangian in harmonic coordinates [Bernard, Blanchet, Bohé, Faye, Marchant, Marsat 2017] • Non-relativistic effective field theory [Foffa, Mastrolia, Porto, Rothstein, Sturani, Sturm 2017–2019] Partial results at 5PN [Foffa, Mastrolia, Sturani, Sturm, Torres Bobadilla 2019; Blümlein, Maier, Marquard 2019] [Bern, Cheung, Roiban, Shen, Solon, Zeng 2019; Bini, Damour, Geralico 2019] Method in this talk: non-relativistic effective field theory [Goldberger, Rothstein 2004] 8 / 26

  9. General Relativity • Here: point-like objects • No spin • No finite-size effects (neutron stars: 5PN, black holes: 6PN) • Harmonic gauge fixing: @ — ( √− gg —� − ” —� ) = 0 g = det( g —� ) • Dimensional regularisation: d = 3 − 2 › S GR = S EH + S GF + S pp Z d d +1 x √− gR 1 S EH = 16 ıG Z d d +1 x √− g Γ — Γ — 1 S GF = − 32 ıG s Z Z @x — @x � X X i i S pp = − dfi i = − − g —� m i m i dt @t @t i i R = g —� R —� Γ — = g ¸˛ Γ — ¸˛ 9 / 26

  10. Non-relativistic effective theory [Goldberger, Rothstein 2004] Similar to non-relativistic QCD [Caswell, Lepage 1985; Pineda, Soto 1997; Luke, Manohar, Rothstein 2000; . . . ] Full theory: Effective theory: General relativity NRGR R dt 1 2 m i v 2 i + Gm 1 m 2 S GR = S EH + S GF + S pp S NRGR = + : : : − → r potential gravitons: classical potentials r ;~ k 0 ∼ v k ∼ 1 r radiation gravitons: radiation gravitons k 0 ∼ v r ;~ k ∼ v r 10 / 26

  11. Potential matching Expansion of action p Expand S GR in v ∼ Gm=r ≪ 1 , e.g. s Z @x — Z @x � dt √− g 00 + O ( v i ) X X i i S pp = − − g —� @t = − m i dt m i @t i i Coupling to spatial components of metric suppressed Temporal Kaluza-Klein decomposition [Kol, Smolkin 2010] ! − 1 A j g —� = e 2 ffi e − 2 d − 1 d − 2 ffi ( ‹ ij + ff ij ) − A i A j A i v 0 v 2 v · · · ff ij ffi A i 11 / 26

  12. Potential matching Diagrammatic expansion Equate amplitude in effective and full theory: − iV + 1 + 1 + : : : q 2! 3! = + + + + + · · · All momenta potential, p 0 ∼ v r ≪ p i ∼ 1 r , → expand propagators: p 2 + p 2 1 = 1 p 4 + O ( v 4 ) 0 p 2 − p 2 ~ ~ ~ 0 12 / 26

  13. Potential matching Diagrammatic expansion V = i log 1 + + + ! + + + · · · ! = i + + + : : : | {z } 1 PN 13 / 26

  14. Potential matching Known results Confirmation of previous results: • 1PN: [Goldberger, Rothstein 2004] • 2PN: [Gilmore, Ross 2008] • 3PN: [Foffa, Sturani 2011] • 4PN: • “static” contribution v = 0 : [Foffa, Mastrolia, Sturani, Sturm 2016; Damour, Jaranowski 2017] • v � = 0 : [Foffa, Sturani 2019; Foffa, Porto, Rothstein, Sturani 2019] [Blümlein, Maier, Marquard 20XX] New: • 5PN static contribution: [Foffa, Mastrolia, Sturani, Sturm, Torres Bobadilla 27 Feb 2019; Blümlein, Maier, Marquard 28 Feb 2019 ] 14 / 26

  15. Potential matching Diagram generation • 4PN including velocities: #loops QGRAF source irred no source loops no tadpoles 0 3 3 3 3 1 70 70 70 70 2 1770 1770 1770 1468 3 13400 9792 9482 5910 4 11822 5407 4685 1815 • Static case: #loops QGRAF source irred no source loops no tadpoles sym 0 1 1 1 1 1 1 2 2 2 2 1 2 19 19 19 15 5 3 360 276 258 122 8 4 10081 5407 4685 1815 50 5 332020 128080 101570 27582 154 15 / 26

  16. Potential matching Static 5PN calculation − iV S 5PN = + + + + + + + + + + + : : : 16 / 26

  17. Potential matching Feynman rules i = − p p 2 2 c d ~ i j 1 j 2 = − ` ´ i 1 i 2 ‹ i 1 j 1 ‹ i 2 j 2 + ‹ i 1 j 2 ‹ i 2 j 1 + (2 − c d ) ‹ i 1 i 2 ‹ j 1 j 2 p 2 p 2 ~ = − i m i m i . . . m n n Pl p 1 i 1 i 2 = i c d ( V i 1 i 2 ffiffiff + V i 2 i 1 ffiffiff ) 2 m Pl p 2 p 2 ‹ i 1 i 2 − 2 p i 1 V i 1 i 2 1 p i 2 ffiffiff = ~ p 1 · ~ 2 p 1 j 1 j 2 c d ( V i 1 i 2 ;j 1 j 2 + V i 2 i 1 ;j 1 j 2 + V i 1 i 2 ;j 2 j 1 + V i 2 i 1 ;j 2 j 1 = i ffiffiffff ) ffiffiffff ffiffiffff ffiffiffff 16 m 2 Pl p 2 i 1 i 2 p 2 ( ‹ i 1 i 2 ‹ j 1 j 2 − 2 ‹ i 1 j 1 ‹ i 2 j 2 ) − 2( p i 1 2 ‹ j 1 j 2 + p j 1 V i 1 i 2 ;j 1 j 2 1 p i 2 1 p j 2 2 ‹ i 1 i 2 ) + 8 ‹ i 1 j 1 p i 2 1 p j 2 = ~ p 1 · ~ 2 ffiffiffff 17 / 26

  18. Potential matching Feynman rules i 1 i 2 p 1 k 1 k 2 = i V i 1 i 2 ;j 1 j 2 ;k 1 k 2 V i 2 i 1 ;j 1 j 2 ;k 1 k 2 ( ˜ + ˜ ) ffffff ffffff p 2 32 m Pl j 1 j 2 V i 1 i 2 ;j 1 j 2 ;k 1 k 2 ˜ = V i 1 i 2 ;j 1 j 2 ;k 1 k 2 + V i 1 i 2 ;j 2 j 1 ;k 1 k 2 + V i 1 i 2 ;j 1 j 2 ;k 2 k 1 + V i 1 i 2 ;j 2 j 1 ;k 2 k 1 ffffff ffffff ffffff ffffff ffffff p 2 p 2 “ V i 1 i 2 ;j 1 j 2 ;k 1 k 2 − ‹ j 1 j 2 ` 2 ‹ i 1 k 1 ‹ i 2 k 2 − ‹ i 1 i 2 ‹ k 1 k 2 ´ = ( ~ 1 + ~ p 1 · ~ p 2 + ~ 2 ) ffffff ‹ i 1 j 1 ` 4 ‹ i 2 k 1 ‹ j 2 k 2 − ‹ i 2 j 2 ‹ k 1 k 2 ´ − ‹ i 1 i 2 ‹ j 1 k 1 ‹ j 2 k 2 ˜” + 2 ˆ n p k 2 1 p i 2 2 − p i 2 1 p k 2 ‹ i 1 j 1 ‹ j 2 k 1 + 2 4 ` ´ 2 p i 1 1 + p i 1 p i 2 2 ‹ j 1 k 1 ‹ j 2 k 2 − p k 1 1 p k 2 2 ‹ i 1 j 1 ‹ i 2 j 2 ˜ + 2 ˆ` ´ 2 p k 1 1 p k 2 p k 2 1 p i 2 2 − p i 2 1 p k 2 p i 1 1 + p i 1 p i 2 + ‹ j 1 j 2 ˆ 2 ‹ i 1 i 2 + 2 ‹ i 1 k 1 − 2 ‹ k 1 k 2 ˜ ` ´ ` ´ 2 2 + p j 2 4 p i 2 1 ‹ i 1 k 1 ‹ j 1 k 2 + p j 1 “ 2 ‹ i 1 k 1 ‹ i 2 k 2 − ‹ i 1 i 2 ‹ k 1 k 2 ´ ` 2 1 p i 2 1 ‹ k 1 k 2 − 2 p k 2 − p k 2 ‹ i 1 j 1 ` 1 ‹ i 2 k 1 ´ 1 ‹ i 1 i 2 ‹ j 1 k 1 ˜” ˆ + 2 + p j 2 p j 1 − 4 p i 2 “ 2 ‹ i 1 k 1 ‹ i 2 k 2 − ‹ i 1 i 2 ‹ k 1 k 2 ´ 2 ‹ i 1 k 1 ‹ j 1 k 2 ` 1 1 p k 2 2 p k 2 2 ‹ i 2 k 1 − p i 2 2 ‹ i 1 i 2 ‹ j 1 k 1 + ‹ i 1 j 1 ` 2 ‹ k 1 k 2 ´˜”o ˆ + 2 d − 1 √ c d = 2 ; m Pl = 1 = 32 ıG d − 2 18 / 26

  19. Potential matching Diagram families Algebraic manipulations ( FORM [Vermaseren et al.] ) → massless propagators: , Z d d l 1 ı d= 2 · · · d d l 5 N ( q; l 1 ; : : : ; l 5 ) P f ( q ) = p 2 a 1 p 2 a 10 ı d= 2 ~ · · · ~ 1 10 19 / 26

  20. Potential matching Master integrals Reduction to master integrals ( crusher ): [Chetyrkin, Tkachov 1981; Laporta 2000] V S 5PN = c 0 + c 1 + c 2 + O ( › ) + c 3 c j : Laurent series in › = 3 − d 2 , polynomials in m 1 ; m 2 ; r − 1 ; G − 1 a q Master integrals factorise into and known b [Lee, Mingulov 2015; Damour, Jaranowski 2017] 20 / 26

  21. Potential matching Result N = − G V S r m 1 m 2 1PN = G 2 V S 2 r 2 m 1 m 2 ( m 1 + m 2 ) » 1 – 2PN = − G 3 V S 2( m 2 1 + m 2 r 3 m 1 m 2 2 ) + 3 m 1 m 2 » 3 – 3PN = G 4 ` ´ V S m 3 1 + m 3 r 4 m 1 m 2 + 6 m 1 m 2 ( m 1 + m 2 ) 2 8 » 3 – 4PN = − G 5 + 31 + 141 ` ´ ` ´ V S m 4 1 + m 4 m 2 1 + m 2 4 m 2 1 m 2 r 5 m 1 m 2 3 m 1 m 2 2 2 2 8 " # 5PN = G 6 5 2 ) + 91 2 ) + 653 V S 16( m 5 1 + m 5 6 m 1 m 2 ( m 3 1 + m 3 6 m 2 1 m 2 r 6 m 1 m 2 2 ( m 1 + m 2 ) 21 / 26

  22. Potential matching Velocity corrections Full corrections include velocities and higher time derivatives : » 1 – L 2PN = + G 3 2( m 2 1 + m 2 r 3 m 1 m 2 2 ) + 3 m 1 m 2 » 15 – a 2 − 1 + Gm 1 m 2 r 8 ~ a 1 ~ 8( ~ a 1 ~ r )( ~ a 2 ~ r ) + ( terms depending on ~ v 1 ; ~ v 2 ) Can be eliminated using • Total time derivatives ‹ L ∝ d dt F ( ~ r; ~ v 1 ; ~ v 2 ) “ ” “ ” a 1 + Gm 2 a 2 − Gm 1 • Equations of motion ‹ L ∝ ~ r 3 ~ r ~ r 3 ~ r » 1 – L 2PN = − G 3 2 ) + 5 4( m 2 1 + m 2 r 3 m 1 m 2 4 m 1 m 2 + ( terms depending on ~ v 1 ; ~ v 2 ) 22 / 26

  23. Post-Newtonian expansion Energy 0.00 BH - BH - 0.05 E /( μ c 2 ) 4PN / 2PN 3PN - 0.10 NS - NS 1PN N Equal mass case - 0.15 0.00 0.05 0.10 0.15 0.20 0.25 0.30 [( rs Ω )/( 2c )] 2 / 3 23 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend