the optimality of ipg methods for odd degrees of
play

The optimality of IPG methods for odd degrees of polynomial - PowerPoint PPT Presentation

The optimality of IPG methods for odd degrees of polynomial approximation Oto Havle Vt Dolej Charles University Prague Workshop Dresden-Prague on Numerical Analysis 2010 1 / 21 Contents Introduction 1 Main result and numerical


  1. The optimality of IPG methods for odd degrees of polynomial approximation Oto Havle Vít Dolejší Charles University Prague Workshop Dresden-Prague on Numerical Analysis 2010 1 / 21

  2. Contents Introduction 1 Main result and numerical evidence 2 3 Sketch of the proof Conclusion 4 2 / 21

  3. Contents Introduction 1 Main result and numerical evidence 2 3 Sketch of the proof Conclusion 4 3 / 21

  4. DGFEM for the elliptic model problem Interior Penalty Discontinuous Finite Element Galerkin discretization. u ∈ H 2 (Ω) : − ∆ u = f in Ω + boundary conditions ↓ ↓ u h ∈ S hp : B h ( u h , v h ) = L h ( v h ) for all v h ∈ S hp Test and trial space S hp of piecewise polynomial functions of degree at most p ≥ 1. 4 / 21

  5. IIPG, NIPG, SIPG; Interior penalty � � B h ( u , v ) = ∇ u · ∇ v d x K K ∈ T h � � � � − � u � [ v ] + θ � v � [ u ] dS Γ Γ ∈ F h c W � � + [ u ] [ v ] dS H Γ Γ Γ ∈ F h where [ v ] denotes the jump and � v � the average value of v on the mesh face Γ , and  1 , SIPG (symmetric variant)   θ = 0 , IIPG (incomplete variant)  − 1 , NIPG (nonsymetric variant)  5 / 21

  6. IIPG, NIPG, SIPG; Interior penalty � � B h ( u , v ) = ∇ u · ∇ v d x K K ∈ T h � � � � − � u � [ v ] + θ � v � [ u ] dS Γ Γ ∈ F h c W � � + [ u ] [ v ] dS H Γ Γ Γ ∈ F h where [ v ] denotes the jump and � v � the average value of v on the mesh face Γ , and H Γ = h L + h R , max ( h L , h R ) , diam (Γ) etc. 2 c W > 0 , large enough 5 / 21

  7. What is the optimal convergence behavior? A priori error estimate in a given norm � · � � u − u h � = O ( h k ) Best possible approximation in the trial space S hp � u − v h � = O ( h ℓ ) inf v h ∈S hp The error estimate is optimal if k = ℓ . For example: � · � H 1 (Ω , T h ) � · � L 2 (Ω) DGFEM - SIPG p p + 1 DGFEM - NIPG, IIPG p p classical FEM p p + 1 L 2 -projection p p + 1 6 / 21

  8. Facts about L 2 -convergence of nonsymetric DGFEM Numerical experiments Optimal O ( h p + 1 ) for odd p , suboptimal O ( h p ) for even p . Suboptimal behavior possible for odd p on special nonuniform meshes [Guzmán and Riviére, 2009]. General theoretical results Suboptimal estimate O ( h p ) follows from discrete Poincaré-Friedrichs inequality. Optimal estimates can be proven for overpenalized DGFEM. 7 / 21

  9. Facts about L 2 -convergence of nonsymetric DGFEM (contd.) The optimal L 2 convergence has been proved for: One-dimensional NIPG/IIPG with odd p and uniform meshes. [Larson, Niklasson, 2004] 2D NIPG, linear triangles, special assumptions on the mesh. [Burmann, Stamm, 2008] 2D/3D IIPG/NIPG, bilinear/trilinear elements on uniform Cartesian meshes. [Wang, Wang, Sun, Wheeler 2009] Our results: Optimal error estimate for one-dimensional IIPG with odd p , nonuniform meshes, special assumption on the penalty parameter. 8 / 21

  10. Contents Introduction 1 Main result and numerical evidence 2 3 Sketch of the proof Conclusion 4 9 / 21

  11. 1D model problem Continuous problem − u ′′ = f u ′ ( 0 ) = g N in ( 0 , 1 ) , u ( 1 ) = u D locally quasi-uniform mesh 1 h k h k = x k + 1 − x k , ≤ ≤ C H . C H h k + 1 IIPG discretization � x k + 1 N − 1 N � � u ′ h v ′ u ′ � � B h ( u h , v h ) = h d x − k [ v h ] k h x k k = 0 k = 1 N c W � + [ u h ] k [ v h ] k H k k = 1 � 1 fv h d x − g N v h ( 0 ) + c W L h ( v h ) = u D v h ( 1 ) H N 0 10 / 21

  12. Assumptions The interior and boundary penalization term N c W � J h ( u h , v h ) = [ u h ] k [ v h ] k H k k = 1 depends on parameters { c W , H k : k = 1 , . . . , N } . H k is given by H k = H ( h k − 1 , h k ) for k < N , H N = H ( h N − 1 , h N − 1 ) H ( · , · ) is a continuous function and H ( a , b ) > 0 , H ( a , b ) = H ( b , a ) , H ( κ a , κ b ) = κ H ( a , b ) c W ≥ c ⋆ W 11 / 21

  13. The main result Then two following assertions are equivalent. (A) There exists a constant C E > 0 such that � u h − u � L 2 ( 0 , 1 ) ≤ C E h p + 1 where u is the weak solution. (B) The degree of approximation p is an odd number and the function H is a multiple of a p + 1 − b p + 1  , a � = b   a p − b p   H p ( a , b ) =   p + 1 p a , a = b   12 / 21

  14. Numerical experiments Continuous problem: − u ′′ ( x ) = x 10 for x ∈ ( 0 , 1 ) , u ( 0 ) = u ( 1 ) = 0 Computational meshes: uniform, h k = h = 1 / N non-uniform, N is a multiple of 3 3 3 3 h 3 i = 16 N , h 3 i + 1 = 5 · 16 N , h 3 i + 2 = 10 · 16 N various choices of H ( · , · ) 13 / 21

  15. Results on uniform meshes p= 1 NIPG IIPG SIPG N � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC 12288 1.087E-09 2.000 2.207E-10 2.000 1.319E-10 1.999 24576 2.717E-10 2.000 5.518E-11 2.000 3.297E-11 2.000 49152 6.792E-11 2.000 1.380E-11 2.000 8.244E-12 2.000 p= 2 12288 3.407E-10 2.000 1.278E-11 2.001 5.863E-15 3.000 24576 8.516E-11 2.000 3.194E-12 2.000 7.329E-16 3.000 49152 2.129E-11 2.000 7.985E-13 2.000 9.161E-17 3.000 p= 3 12288 1.554E-18 4.001 4.372E-19 4.000 3.178E-19 4.000 24576 9.711E-20 4.000 2.732E-20 4.000 1.987E-20 4.000 49152 6.069E-21 4.000 1.708E-21 4.000 1.242E-21 4.000 p= 4 12288 3.169E-19 4.000 1.288E-20 4.001 9.840E-24 5.000 24576 1.981E-20 4.000 8.048E-22 4.000 3.075E-25 5.000 49152 1.238E-21 4.000 5.030E-23 4.000 9.610E-27 5.000 14 / 21

  16. Results on nonuniform meshes, H ( a , b ) = max ( a , b ) p= 1 NIPG IIPG SIPG N � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC 12288 2.082E-07 0.974 2.076E-08 1.020 3.360E-10 1.999 24576 1.050E-07 0.987 1.031E-08 1.010 8.403E-11 2.000 49152 5.275E-08 0.994 5.136E-09 1.005 2.101E-11 2.000 p= 2 12288 3.283E-10 2.003 1.680E-11 2.002 3.501E-14 3.000 24576 8.198E-11 2.002 4.196E-12 2.001 4.375E-15 3.000 49152 2.048E-11 2.001 1.049E-12 2.001 5.469E-16 3.000 p= 3 12288 6.677E-15 2.993 3.040E-17 3.088 3.023E-18 4.000 24576 8.366E-16 2.997 3.694E-18 3.040 1.889E-19 4.000 49152 1.047E-16 2.998 4.557E-19 3.019 1.181E-20 4.000 p= 4 12288 9.695E-19 4.004 5.214E-20 4.002 1.903E-22 5.000 24576 6.052E-20 4.002 3.256E-21 4.001 5.946E-24 5.000 49152 3.780E-21 4.001 2.034E-22 4.001 1.858E-25 5.000 15 / 21

  17. Results on nonuniform meshes, H ( a , b ) = H p ( a , b ) p= 1 NIPG IIPG SIPG N � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC � e h � L 2 (Ω) EOC 12288 3.178E-07 0.977 9.167E-10 1.999 3.274E-10 1.999 24576 1.602E-07 0.989 2.292E-10 2.000 8.189E-11 1.999 49152 8.040E-08 0.994 5.732E-11 2.000 2.048E-11 2.000 p= 2 12288 3.380E-10 2.004 1.837E-11 2.004 3.479E-14 3.000 24576 8.440E-11 2.002 4.587E-12 2.002 4.349E-15 3.000 49152 2.109E-11 2.001 1.146E-12 2.001 5.437E-16 3.000 p= 3 12288 6.755E-15 2.993 3.993E-18 4.000 3.020E-18 4.000 24576 8.465E-16 2.997 2.496E-19 4.000 1.887E-19 4.000 49152 1.059E-16 2.998 1.560E-20 4.000 1.180E-20 4.000 p= 4 12288 9.714E-19 4.004 5.306E-20 4.003 1.902E-22 5.000 24576 6.063E-20 4.002 3.313E-21 4.001 5.944E-24 5.000 49152 3.787E-21 4.001 2.069E-22 4.001 1.857E-25 5.000 16 / 21

  18. Contents Introduction 1 Main result and numerical evidence 2 3 Sketch of the proof Conclusion 4 17 / 21

  19. The proof of B = ⇒ A ⇒ � u h − u � L 2 ≤ Ch p + 1 p odd , H = H p = Step 1 The Aubin-Nitsche duality trick. − ψ ′′ = u h − u , ψ ′ ( 0 ) = ψ ( 1 ) = 0 N � � u h − u � 2 ψ ′ ( x k ) [ u h − u ] k L 2 ( 0 , 1 ) = B h ( u h − u , ψ ) − k = 1 18 / 21

  20. The proof of B = ⇒ A ⇒ � u h − u � L 2 ≤ Ch p + 1 p odd , H = H p = Step 1 The Aubin-Nitsche duality trick. Step 2 Identify the leading part of the jump [ u h ] k . c W [ u h ] k = B h ( u h , w ⋆ h , p , k ) = L h ( w ⋆ h , p , k ) H k � 1 f w ⋆ = h , p , k d x (interior nodes) 0 f ( p − 1 ) ( x k ) + O ( h p + 1 ( − 1 ) p − 1 h p k − 1 − h p � � = K p ) k k h p k − 1 − h p f ( p − 1 ) ( x k ) + O ( h p + 1 � � = K p ) k k 18 / 21

  21. The proof of B = ⇒ A ⇒ � u h − u � L 2 ≤ Ch p + 1 p odd , H = H p = Step 1 The Aubin-Nitsche duality trick. Step 2 Identify the leading part of the jump [ u h ] k . Step 3 Summation by parts. N N − 1 � � h p + 1 k − 1 − h p + 1 � � f ( p − 1 ) ( x k ) ψ ′ ( x k ) [ u h − u ] k ≈ ψ ′ ( x k ) k k = 1 k = 1 N − 2 ψ ′ f ( p − 1 ) � x k + 1 � h p + 1 � ≈ k x k k = 1 � Ch p + 1 � f � H p ( 0 , 1 ) � ψ � H 2 ( 0 , 1 ) 18 / 21

  22. The proof of A = ⇒ B � u h − u � L 2 ≤ Ch p + 1 = ⇒ p odd , H = H p Step 1 Perturbation of the penalization parameter c W . � u c W 1 − u c W 2 � L 2 ≤ � u c W 1 − u � L 2 + � u c W 2 − u � L 2 ≤ Ch p + 1 h h h h The difference u c W 1 − u c W 2 constant on each element h h N � 1 − c W 1 � � � u c W 1 − u c W 2 � u C W 1 � ( x ℓ , x ℓ + 1 ) = � h h h c W 2 k k = ℓ + 1 We already have an expression for [ u h ] k . We can estimate � u c W 1 − u c W 2 � L 2 for particular meshes and h h right hand side function f . 19 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend