the heteroscedastic odd log logistic generalized gamma
play

The heteroscedastic odd log-logistic generalized gamma regression - PowerPoint PPT Presentation

The heteroscedastic odd log-logistic generalized gamma regression model for censored data F abio Prataviera Edwin M. M. Ortega Gauss M. Cordeiro Altemir da Silva Braga VIII - Encontro dos Alunos da P os Gradua c ao em Estat


  1. The heteroscedastic odd log-logistic generalized gamma regression model for censored data F´ abio Prataviera Edwin M. M. Ortega Gauss M. Cordeiro Altemir da Silva Braga VIII - Encontro dos Alunos da P´ os Gradua¸ c˜ ao em Estat´ ıstica e Experimenta¸ c˜ ao Agronˆ omica Piracicaba, november of 2018 (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 1 / 39

  2. Structure Introduction 1 The odd log-logistic generalized gamma distribution 2 The log odd log-logistic generalized gamma distribution 3 The heteroscedastic LOLLGG regression model 4 Maximum Likelihood Estimation 5 Simulation study 6 Application 7 Concluding Remarks 8 Future research 9 10 References (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 2 / 39

  3. Odd log-logistic family Following the same idea by Gleaton and Lynch (2006) - odd log-logistic- G (”OLL- G ”) family � G ( t ; ξ ) λ x λ − 1 G ( t ; ξ ) λ ¯ G ( t ; ξ ) F ( t ) = (1 + x λ ) 2 dx = G ( t ; ξ ) λ . (1) G ( t ; ξ ) λ + ¯ 0 We can write � � F ( t ) log ¯ F ( t ) ¯ � � λ = e G ( t ; ξ ) = 1 − G ( t ; ξ ) . G ( t ) log ¯ G ( t ) f ( t ) = λ g ( t ; ξ ) { G ( t ; ξ )[1 − G ( t ; ξ )] } λ − 1 . (2) � G ( t ; ξ ) λ + [1 − G ( t ; ξ )] λ � 2 (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 3 / 39

  4. Generalized gamma distribution Stacy and Mihram (1965) The generalized gamma (GG) model has probability density function (pdf) and cumulative distribution function (cdf) given by � � τ � � t � τ k − 1 � t | τ | g ( t ; α, τ, k ) = exp − , α Γ( k ) α α and  � � t � τ � τ ) γ ( k , ( t α )   γ 1 k , = , if τ > 0 ,  α Γ( k ) G ( t ; α, τ, k ) = (3)  � � t � τ �  τ ) γ ( k , ( t α )  1 − γ 1 k , = 1 − , if τ < 0 , α Γ( k ) respectively, where τ � = 0 and k > 0 are the shape parameters, α > 0 is the scale parameter. (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 4 / 39

  5. Odd log-logistic generalized gamma distribution Density function Further, the odd log-logistic generalized gamma (OLLGG) pdf (for t > 0), say f ( t ) = f ( t ; α, τ, k , λ ), becomes f ( t ) = λ | τ | ( t /α ) τ k − 1 exp[ − ( t /α ) τ ] { γ 1 ( k , ( t /α ) τ )[1 − γ 1 ( k , ( t /α ) τ )] } λ − 1 , (4) α Γ( k ) { γ λ 1 ( k , ( t /α ) τ ) + [1 − γ 1 ( k , ( t /α ) τ )] λ } 2 where τ is not zero and the other parameters are positive. Hazard function The hrf of T can be constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub and bimodal shaped. It is given by  τ ) λ τ ( t /α ) τ k − 1 exp[ − ( t /α ) τ ] γ λ − 1 ( k , ( t α )  1 τ )] , if τ > 0 ,   τ ) + [ 1 − γ 1 ( k , ( t τ )] λ �  � 1 ( k , ( t α ) α ) [ 1 − γ 1 ( k , ( t α ) γ λ α Γ( k )  h ( t ) = (5)   τ )] λ − 1 λ ( − τ ) ( t /α ) τ k − 1 exp[ − ( t /α ) τ ] [ 1 − γ 1 ( k , ( t α )   τ ) , if τ < 0 .  τ ) + [ 1 − γ 1 ( k , ( t τ )] λ � � 1 ( k , ( t α ) α ) γ 1 ( k , ( t α ) γ λ α Γ( k ) (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 5 / 39

  6. Plots of the OLLGG density function (a) (b) (c) 2.0 1.5 2.0 τ =−4.00;k=0.45; λ =0.15 τ =4.00;k=0.45; λ =0.15 τ =−8.00;k=30.00 τ =−4.50;k=0.40; λ =0.20 τ =4.50;k=0.40; λ =0.20 τ =−5.00;k=10.00 τ =−5.45;k=0.35; λ =0.25 τ =5.45;k=0.35; λ =0.25 τ =3.00;k=25.00 τ =−5.50;k=0.30; λ =0.30 τ =5.50;k=0.30; λ =0.30 τ =4.00;k=30.00 1.5 1.5 τ =−6.00;k=0.25; λ =0.35 τ =6.00;k=0.25; λ =0.35 τ =6.00;k=30.00 1.0 f(t) 1.0 f(t) f(t) 1.0 0.5 0.5 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 2 3 4 5 6 7 8 t t t Figura: Plots of the OLLGG density function for some parameter values. (a) For some values of τ < 0 with α = 1 fixed. (b) For some values of τ > 0 with α = 1 fixed. (c) For some values of τ < 0 and τ > 0 with α = 2 and λ = 0 . 15 fixed. (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 6 / 39

  7. Plots of the OLLGG density function (a) (b) (c) 1.5 3.0 5 τ =−10.00;k=20.00 τ =−8.00;k=30.00 τ =−8.50;k=25.00 τ =−5.00;k=10.00 τ =−7.45;k=30.00 τ =3.00;k=25.00 2.5 τ =−6.50;k=35.00 τ =4.00;k=30.00 4 τ =−6.00;k=35.00 τ =6.00;k=30.00 1.0 2.0 3 h(t) h(t) h(t) 1.5 α =0.60; τ =−2.00;k=1.20; λ =0.30 2 α =0.35; τ =0.70;k=2.30; λ =1.10 0.5 1.0 α =1.55; τ =1.25;k=0.55; λ =1.00 α =1.00; τ =1.00;k=1.00; λ =1.00 α =1.50; τ =2.00;k=2.00; λ =1.35 1 0.5 0.0 0.0 0 0 1 2 3 4 5 6 1.4 1.6 1.8 2.0 2.2 2.4 2 3 4 5 6 7 8 t t t Figura: Plots of the OLLGG hrf for some parameter values. (a) For some values of τ < 0 and τ > 0, an k and α fixed. (b) For some values of τ < 0, α = 1, λ = 0 . 15 and k fixed. (c) For some values of τ < 0 and τ > 0, α = 2, λ = 0 . 15 and k fixed. (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 7 / 39

  8. New models Tabela: Some OLL-G sub-models for τ > 0. Distribution α τ k λ OLL-Gamma α 1 λ k OLL-Weibull α τ 1 λ OLL-Exponential α 1 1 λ n OLL-Chi-square 2 1 λ √ 2 n OLL-Chi 2 2 λ √ 2 n OLL-Scaled Chi 2 σ 2 λ 2 OLL-Rayleigh α 2 1 λ 3 OLL-Maxwell α 2 λ √ 2 1 OLL-Folded normal 2 2 λ √ 2 OLL-Reciprocal Circular normal 2 2 1 λ √ 3 OLL-Spherical normal 2 2 λ 2 1 2 γ θ 1 OLL-Generalized half-normal 2 2 γ λ 2 1 2 θ 1 OLL-Half-normal 2 2 λ 2 (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 8 / 39

  9. New models Tabela: Some OLL-G sub-models for τ < 0. Distribution α τ k λ OLL-Reciprocal Gamma α -1 λ k OLL-Reciprocal Weibull α - τ 1 λ OLL-Reciprocal Exponential α -1 1 λ n OLL-Reciprocal Chi-square 2 -1 λ √ 2 n OLL-Reciprocal Chi 2 -2 λ √ 2 n OLL-Reciprocal Scaled Chi 2 σ -2 λ 2 OLL-Reciprocal Rayleigh α -2 1 λ 3 OLL-Reciprocal Maxwell α -2 λ √ 2 1 OLL-Reciprocal Folded normal 2 -2 λ √ 2 OLL-Reciprocal Circular normal 2 -2 1 λ √ 3 OLL-Reciprocal Spherical normal 2 -2 λ 2 1 2 γ θ 1 OLL-Reciprocal Generalized half-normal 2 -2 γ λ 2 1 2 θ 1 OLL-Reciprocal Half-normal 2 -2 λ 2 (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 9 / 39

  10. Useful expansions for OLLGG distribution First, we define the exponentiated-generalized gamma (“Exp-GG”) distribution, say W ∼ Exp c [ G ( α, τ, k )] with power parameter c > 0, if W has cdf and pdf given by � � τ � � t � τ k − 1 � t c | τ | H c ( t ) = G ( t ; α, τ, k ) c and h c ( t ) = G ( t ; α, τ, k ) c − 1 , exp − α Γ( k ) α α respectively. Second, we obtain an expansion for F ( t ) in (2) using a power series for G ( t ; α, τ, k ) λ ( λ > 0 real) � ∞ G ( t ; α, τ, k ) λ = a j G ( t ; α, τ, k ) j , (6) j =0 where � λ � � u � � ∞ ( − 1) u + j a j = a j ( λ ) = . u j j = u (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 10 / 39

  11. Useful expansions for OLLGG distribution For any real λ > 0, we use generalized binomial expansion to obtain � λ � � ∞ [1 − G ( t ; α, τ, k )] λ = ( − 1) j G ( t ; α, τ, k ) j . (7) j j =0 Inserting (6) and (7) in equation for cdf gives the following expressions  � ∞ j =0 a j G ( t ; α,τ, k ) j   j =0 b j G ( t ; α,τ, k ) j , if τ > 0 , � ∞ F ( t ) = � ∞ j =0 a ∗ j G ( t ; α,τ, k ) j   j =0 b j G ( t ; α,τ, k ) j , if τ < 0 , � ∞ j = ( − 1) j � λ � and b j = a j + ( − 1) j � λ � where a ∗ for j ≥ 0. j j (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 11 / 39

  12. Useful expansions for OLLGG distribution Thus, for τ < 0, the ratio of the two power series can be expressed as � ∞ c j G ( t ; α, τ, k ) j , F ( t ) = (8) j =0 where c 0 = a ∗ 0 / b 0 and the coefficients c j ’s (for j ≥ 1) are determined from the recurrence equation � � j � c j = b − 1 a ∗ b r a ∗ j − . 0 j − r r =1 By differentiating (8), the pdf of T follows as � ∞ f ( t ) = c j +1 h j +1 ( t ) , (9) j =0 where h j +1 ( t ) (for j ≥ 0) is the Exp-GG density function with power parameter j + 1 given by � t � τ k − 1 � � t � τ � h j +1 ( t ) = ( j + 1) | τ | γ 1 ( k , ( t /α ) τ ) j . exp − (10) α Γ( k ) α α (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 12 / 39

  13. The LOLLGG distribution If the random variable T follows the OLLGG density function (4), we √ k ) − 1 and define Y = log( T ). Setting k = q − 2 , τ = ( σ � � µ − τ − 1 log( k ) α = exp , the density function of Y can be expressed as ( y ∈ R ) λ | q | ( q − 2 ) q − 2 � q − 1 � y − µ � � � y − µ ��� − q − 2 exp f ( y ) = exp × q σ Γ( q − 2 ) σ σ � � � � y − µ ��� � � � � y − µ ����� λ − 1 q − 2 , q − 2 exp q − 2 , q − 2 exp γ 1 1 − γ 1 × q q σ σ � ���� λ � − 2 � � � y − µ ��� � � � � y − µ γ λ q − 2 , q − 2 exp q − 2 , q − 2 exp q + 1 − γ 1 q , 1 σ σ where µ ∈ R , σ > 0, λ > 0 and q is different from zero. We consider an extended form including the case q = 0 (Lawless, 2003). (ESALQ-USP) OLLGG distribution Piracicaba, november of 2018 13 / 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend