elliptic gamma functions gerbes and triptic curves
play

Elliptic gamma functions, gerbes and triptic curves Giovanni - PowerPoint PPT Presentation

Elliptic gamma functions, gerbes and triptic curves Giovanni Felder, ETH Zurich Paris, 18 January 2007 1 Table of contents 0. Introduction 1. Two periods: Jacobis infinite products, elliptic curves, SL 2 ( Z ) 2. Three periods:


  1. Elliptic gamma functions, gerbes and triptic curves Giovanni Felder, ETH Zurich Paris, 18 January 2007 1

  2. Table of contents 0. Introduction 1. Two periods: Jacobi’s infinite products, elliptic curves, SL 2 ( Z ) 2. Three periods: Ruijsenaars’s elliptic gamma functions 3. The moduli stack of triptic curves and SL 3 ( Z ) 4. The gamma gerbe and its Dixmier–Douady class based on joint work with Alexander Varchenko and with Andr´ e Henriques, Carlo A. Rossi and Chenchang Zhu 2

  3. Introduction In conformal field theory based on quantum groups and statistical mechanics there appear linear difference equations with elliptic coefficients. Idea: the step plays the role of a third period. Geometrically, one is lead to consider triptic curves C / Z x 1 + Z x 2 + Z x 3 . Today we consider the simplest case of such a difference equa- tion, the functional equation of the elliptic gamma function. 3

  4. Jacobi’s infinite product In his Fundamenta nova Jacobi introduced the function ∞ (1 − q n +1 /t )(1 − q n t ) , � Θ( t, q ) = t � = 0 , | q | < 1 . n =0 The Jacobi product obeys the functional equation Θ( qt, q ) = − t − 1 Θ( t, q ) . This equation holds also for | q | > 1 if we set ∞ (1 − q − n /t ) − 1 (1 − q − n − 1 t ) − 1 , � Θ( t, q ) = | q | > 1 . n =0 Jacobi and Hermite discovered transformation properties of Θ under q → q 4 π/ ln q , t → t − 4 π/ ln q and more generally under SL 2 ( Z ) ⋉ Z 2 4

  5. Geometric content: elliptic curves Let x 1 , x 2 ∈ C be linearly independent over R . E ( x 1 ,x 2 ) = C / Z x 1 + Z x 2 is an oriented elliptic curve. � � a b E x ≃ E x ′ iff x ′ = λAx , λ ∈ C × , A = ∈ SL 2 ( Z ) c d Moduli space of oriented elliptic curves: M = Y/ SL 2 ( Z ) Y = { ( x 1 : x 2 ) ∈ C P 1 | x 1 , x 2 R -linearly independent } = C P 1 − R P 1 = H + ∪ H − 5

  6. Universal oriented elliptic curve The group ISL 2 ( Z ) = SL 2 ( Z ) ⋉ Z 2 acts on x 2 ) � = 0 } / C × X = { ( w, x 1 , x 2 ) | Im( x 1 ¯ x 2 ✁ ✁ via ( A, n ) · ( w, x ) = ( w + n 1 x 1 + n 2 x 2 , Ax ) ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ E = X/ ISL 2 ( Z ) universal curve · w ✁ ✁ ✁ ✁ ↓ ✁ ✁ 0 x 1 M = Y/ SL 2 ( Z ) moduli space Remarks: 1. X is the total space of the line bundle O (1) → C P 1 − R P 1 . (It is actually a trivial bundle over the union of contractible spaces H + ∪ H − ) 2. These spaces are mildly singular. They should be treated as stacks. 6

  7. The Jacobi product as a section of a line bundle over the universal elliptic curve For Im τ > 0, let us write the theta product in additive coordi- nates: ∞ (1 − q n +1 /t )(1 − q n t ) , t = e 2 πiz , q = e 2 πiτ � θ ( z, τ ) = n =0 Extend to Im τ � = 0 by θ ( − z, − τ ) = θ ( z, τ ) − 1 . � w x 2 , x 1 � Then ( w, x 1 , x 2 ) → θ is a meromorphic function on X , a x 2 covering space of the universal elliptic curve X/ ISL 2 ( Z ). 7

  8. Transformation properties under G = ISL 2 ( Z ) , x ′ w ′ � � � � w , x 1 = e 2 πiQ g ( w,x ) θ 1 θ ( ∗ ) x ′ x ′ x 2 x 2 2 2 w ′ = w + n 1 x 1 + n 2 x 2 , x ′ = Ax , g = ( A, n ) ∈ G = ISL 2 ( Z ) Q g ( w, x ) ∈ Q ( x 1 , x 2 )[ w ] of degree 2 in w . Meaning: (a) φ = ( e 2 πiQ g ( w,x ) ) g ∈ G defines a G -equivariant line bundle L on G ( X, O × X (a class in H 1 X )) (b) θ is a G -equivariant meromorphic section of L . Namely if M denotes the sheaf of meromorphic functions, θ ∈ C 0 G ( X, M × ) and (*) means δθ = φ . (In this case everything reduces to group cohomology) 8

  9. Rational, trigonometric and elliptic gamma function Euler 1729: Γ( z + 1) = z Γ( z ) ∞ j 1 − z ( j + 1) z � z ! = Γ( z + 1) = j + z j =1 Jackson 1912: Γ( z + σ, σ ) = (1 − e 2 πiz )Γ( z, σ ) ∞ 1 r = e 2 πiσ , t = e 2 πiz � Γ( z, σ ) = 1 − r j t, j =0 Ruijsenaars 1997: Γ( z + σ, τ, σ ) = θ ( z, τ )Γ( z, τ, σ ) ∞ 1 − q j +1 r k +1 t − 1 q = e 2 πiτ , r = e 2 πiσ , t = e 2 πiz � Γ( z, τ, σ ) = , 1 − q j r k t j,k =0 9

  10. “Modular” properties Extend the definition of Γ( z, τ, σ ) to a meromorphic function on C × ( C − R ) × ( C − R ): Γ( z, − τ, σ ) = Γ( z + τ, τ, σ ) − 1 , Γ( z, τ, − σ ) = Γ( z + σ, τ, σ ) − 1 . Then (G. F., A. Varchenko 2000) Γ( z, τ, σ ) = Γ( z + τ, τ, τ + σ )Γ( z, τ + σ, σ ) . � � � � � � w , x 1 , x 2 w , x 2 , x 3 w , x 3 , x 1 = e − πiP 3 ( w,x ) / 3 , Γ Γ Γ x 3 x 3 x 3 x 1 x 1 x 1 x 2 x 2 x 2 P 3 ( w, x ) = w 3 w 2 + e 2 − 3 e 1 1 + e 2 w − e 1 e 2 . e 3 2 e 3 2 e 3 4 e 3 e 1 = x 1 + x 2 + x 3 , e 2 = x 1 x 2 + x 1 x 3 + x 2 x 3 , e 3 = x 1 x 2 x 3 . 10

  11. Geometric content: triptic curves A triptic curve is a stack of the form E x = C / Z x 1 + Z x 2 + Z x 3 , where x 1 , x 2 , x 3 ∈ C span C over R . E x ≃ E x ′ iff x ′ = λAx λ ∈ C × , A ∈ SL 3 ( Z ). The moduli space of oriented triptic curves is Y/ SL 3 ( Z ), Y = C P 2 − R P 2 . ISL 3 ( Z ) = SL 3 ( Z ) ⋉Z 3 acts on X = { ( w, x ) ∈ C × C 3 − C · R 3 } / C × = total space of O (1) → Y . E = X/ ISL 3 ( Z ) universal triptic curve ↓ M = Y/ SL 3 ( Z ) moduli space This time Y is topologically non-trivial: it retracts to the 2- sphere x 2 1 + x 2 2 + x 2 3 = 0. 11

  12. An ISL 3 ( Z )-equivariant cover of X There is a good open cover of X labeled by Λ prim , the set of primitive vectors in Λ = Z 3 ⊂ C 3 . If a ∈ Λ prim let H ( a ) be the oriented hyperplane in the dual lattice Λ ∨ with equation � δ, a � = 0. U a = { x ∈ Y = C P 2 − R P 2 | Im( � α, x �� β, x � ) > 0 } for any oriented basis α, β of H ( a ). Let V a = p − 1 ( U a ) ⊂ X . Lemma U = ( V a ) a ∈ Λ prim is a good ISL 3 ( Z ) equivariant open cover of X . C ( U , O × ), ˇ C ( U , M × ) be the ˇ Let ˇ Cech complex of U with values in the sheaf of invertible holomorphic/meromorphic functions. 12

  13. Gamma functions associated to pairs of primitive vectors For a, b ∈ Λ prim linearly independent set δ ∈ C + − ( a,b ) / Z γ (1 − e − 2 πi ( � δ,x �− w ) / � γ,x � ) � Γ a,b ( w, x ) = . δ ∈ C − + ( a,b ) / Z γ (1 − e +2 πi ( � δ,x �− w ) / � γ,x � ) � H ( a ) ∩ H ( b ) = Z γ . Set Γ a, ± a = 1. H(b) Γ a,b is a meromorphic func- C _ + b tion on V a ∩ V b . It reduces � w x 3 , x 1 x 3 , x 2 � to Γ if ( a, b ) = x 3 γ ( e 1 , e 2 ). a C_ + H(a) 13

  14. Theorem Γ a,b = Γ − 1 b,a and on V a ∩ V b ∩ V c , Γ a,b ( w, x )Γ b,c ( w, x )Γ c,a ( w, x ) = e − πiP a,b,c ( w,x ) / 3 for some polynomial P a,b,c ( w, x ) ∈ Q ( x 1 , x 2 , x 3 )[ w ] of degree 3 in w with rational coefficients, holomorphic on V a ∩ V b ∩ V c . Moreover Γ ga,gb ( w, gx ) = Γ a,b ( w, x ) , g ∈ SL 3 ( Z ) . Consequences (a) The invertible holomorphic functions φ a,b,c = e − πiP a,b,c / 3 , a, b, c ∈ Λ prim on V a ∩ V b ∩ V c form an SL 3 ( Z )-invariant ˇ Cech cocycle in C 2 ( U , O × ) on X = O (1) → C P 2 − R P 2 . It defines a holomorphic ˇ gerbe on the stack X/ SL 3 ( Z ). (b) Γ = (Γ a,b ) is a meromorphic section of this gerbe, namely an C 1 ( U , M × ) such that δ Γ = φ invariant cochain in ˇ 14

  15. Including the translation subgroup Let µ ∈ Λ ∨ = Z 3 . Then Γ a,b ( w, x ) Γ a,b ( w + � µ, x � , x ) = φ a,b ( µ ; w, x )∆ b ( µ ; w, x ) ∆ a ( µ ; w, x ) , ( w, x ) ∈ V a ∩ V b , for some meromorphic functions ∆ a ( µ ; ) ∈ M × ( V a ) and holo- morphic functions φ a,b ( µ ; ) ∈ O × ( V a ∩ V b ). These identitities are part of a system of identities stating that (Γ , ∆) define a G -equivariant meromorphic section of the gamma gerbe G on the total space X of the line bundle O (1) → C P 2 − R P 2 . The gerbe is defined by an equivariant cocycle φ . 15

  16. The gamma gerbe Let G = ISL 3 ( Z ) = SL 3 ( Z ) ⋉ Z 3 . The complex C n G ( U , F ) = ⊕ p + q = n C p ( G, ˇ C q ( U , F )) , n = 0 , 1 , 2 , . . . with total differential D = δ G + ( − 1) p ˇ δ computes the equivariant cohomology of X with values in F = O × or M × . G ( U , O × ) = C 0 , 2 ⊕ C 1 , 1 ⊕ C 2 , 0 is a 2-cocycle and Theorem φ ∈ C 2 thus defines a gerbe G on the stack X/G . The meromorphic G ( U , M × ) = C 0 , 1 ⊕ C 1 , 0 obeys D (Γ , ∆) = φ cochain (Γ , ∆) ∈ C 1 and thus defines a meromorphic section of G . 16

  17. Explicit formulae In explicit terms, we have identities φ a,b,c ( y )Γ a,c ( y ) = Γ a,b ( y )Γ b,c ( y ) , y ∈ V a ∩ V b ∩ V c , φ a,b ( g ; y )Γ g − 1 a,g − 1 b ( g − 1 y )∆ b ( g ; y ) = ∆ a ( g ; y )Γ a,b ( y ) , y ∈ V a ∩ V b , φ a ( g, h ; y )∆ a ( gh ; y ) = ∆ a ( g ; y )∆ g − 1 a ( h ; g − 1 y ) , y ∈ V a , for all a, b, c ∈ I, g, h ∈ G . φ a,b,c Γ a,b φ a,b ( g ; ) ↑ ˇ δ ∆ a ( g ; ) φ a ( g, h ; ) δ G − → 17

  18. Characteristic class Theorem The Dixmier–Douady class [ φ ] ∈ H 2 G ( X, O × ) of the gamma gerbe maps to a non-trivial class c ∈ H 3 G ( X, Z ) . There is an exact sequence 0 → Z → H 3 G ( X, Z ) / torsion → H 3 ( Z 3 , Z ) → 0 , and c maps to a generator of H 3 ( Z 3 , Z ) ≃ Z . It is well-known that the theta function bundle is hermitian. The same holds for the gamma gerbe: Theorem The gamma gerbe G has a hermitian structure com- patible with the complex structure and thus admits a connective structure. 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend