dispersion theory of the w box for free and bound neutron
play

Dispersion Theory of the W-Box For free and bound neutron -decay - PowerPoint PPT Presentation

Dispersion Theory of the W-Box For free and bound neutron -decay Misha Gorshteyn Johannes Gutenberg-Universitt Mainz Collaborators: Based on 3 papers: Chien-Yeah Seng (U. Bonn) arXiv: 1807.10197 Hiren Patel (UC Santa Cruz) arXiv:


  1. Dispersion Theory of the γ W-Box For free and bound neutron β -decay Misha Gorshteyn Johannes Gutenberg-Universität Mainz Collaborators: Based on 3 papers: Chien-Yeah Seng (U. Bonn) arXiv: 1807.10197 Hiren Patel (UC Santa Cruz) arXiv: 1812.03352 Michael Ramsey-Musolf (UMass) arXiv: 1812.04229

  2. Outline Superallowed nuclear decays: Free neutron decay: γ− physics at hadronic scale ν 5099 . 34 s e : | V ud | 2 = 2984 . 43 s : | V ud | 2 = q q ⌧ n (1 + 3 � 2 )(1 + ∆ R ) W γ F t (1 + ∆ V R ) ⋅ ν = n (“m.d”: model-dependent) is: ν − ν − ( ) ∫ = π ( ) F t = ft (1 + δ 0 R )[1 − ( δ C − δ NS )] π − ν ε µναβ ( ) ⋅ ∫ α β µ ν = ν π ν 1. Dispersion formalism for the 𝛿 W-box 2. Calculation of the universal free-neutron RC Δ RV 3. Splitting the full nuclear RC into free-neutron Δ RV and nuclear modification δ NS 4. Splitting the full RC into “outer” and “inner” � 2

  3. 1. 𝛿 W-box from dispersion relations � 3

  4. ⃗ 𝛿 W-box γ− physics at hadronic scale ν e q q Box at zero momentum transfer * (but with energy dependence) γ W ⋅ ν = n p d 4 q M 2 u e � µ ( k / + m e ) � ν (1 � � 5 ) v ν Z ¯ / � q (“m.d”: model-dependent) is: 2 e 2 G F V ud W T γ W T γ W = µ ν , q 2 [( k � q ) 2 � m 2 q 2 � M 2 ν − ν − (2 ⇡ ) 4 ( ) e ] ∫ = π ( ) W π − ν * Precision goal: 10 -4 ; RC ~ 𝛽 /2 𝜌 ~ 10 -3 ; recoil on top - negligible γ W = ∫ dxe iqx ⟨ f | T [ J μ µναβ ε ( ) ∫ ⋅ α β µ ν = ν em ( x ) J ν ,± T μν π ν W (0)] | i ⟩ Hadronic tensor: two-current correlator General gauge-invariant decomposition of a spin-independent tensor ◆ µ ✓ ◆ ν � g µ ν + q µ q ν T 2 + i ✏ µ ναβ p α q β ✓ ◆ ✓ 1 p � ( p · q ) p � ( p · q ) T µ ν γ W = T 1 + q q T 3 q 2 q 2 q 2 ( p · q ) 2( p · q ) Loop integral with generally unknown forward amplitudes p μ = ( M , 0 ) d 4 qM 2 T γ W = − α 2 π G F V ud ∫ W u e γ β (1 − γ 5 ) u ν ∑ C β i ( E , ν , q 2 ) T γ W ( ν , q 2 ) W − q 2 ) ¯ E = ( pk )/ M i q 2 ( M 2 i ν = ( pq )/ M Known algebraic functions of external energy E and loop variables 𝜉 , q 2 � 4

  5. 𝛿 W-box from Dispersion Relations γ γ T 1,2,3 - analytic functions inside the contour C in the complex ν -plane determined by their singularities on the real axis - poles + cuts 2 π i ∮ dz T γ W ( z , Q 2 ) ( ν , Q 2 ) = 1 i T γ W , ν ∈ C i z − ν ν γ γ W W Forward amplitudes T i - unknown; q q q q ν = π ν Their absorptive parts can be related to ε µναβ ( ) production of on-shell intermediate states ∑ µ ν α β π δ + − = ν π ν —> a 𝛿 W-analog of structure functions F 1,2,3 p p p p X X = inclusive strongly-interacting on-shell physical states ν ν = π ν Structure functions F i 𝛿 W are NOT data Im T γ W ( ν , Q 2 ) = 2 π F γ W ( ν , Q 2 ) µναβ ε ( ) ∑ α β π δ + − µ ν = ν i i But they can be related to data π ν � 5

  6. 𝛿 W-box from Dispersion Relations γ γ Crossing behavior: relate the left and right hand cut Mismatch between the initial and final states - asymmetric; Symmetrize - 𝛿 is a mix of I=0 and I=1 T ( I ) i ( − ν , Q 2 ) = ξ ( I ) i T ( I ) i ( ν , Q 2 ) 1 i τ a + T ( − ) T γ W , a = T (0) 2 [ τ 3 , τ a ] i i ξ (0) = + 1, ξ (0) ξ ( − ) = − ξ (0) 2,3 = − 1; 1 i i Two types of dispersion relations for scalar amplitudes ν ν = π ν d ν ′ � [ ν ′ � − ν − i ϵ ] F ( I ) ∞ ξ ( I ) i ( ν , Q 2 ) = 2 ∫ 1 i T ( I ) i ( ν ′ � , Q 2 ) ε µναβ ( ) ν ′ � − ν − i ϵ + ∑ µ ν α β π δ + − = ν π ν 0 Substitute into the loop and calculate leading energy dependence ∞ ∞ dQ 2 M 2 W + Q 2 ∫ π MN ∫ α d ν ν + 2 q W ( ν + q ) 2 F (0) Re □ even 3 ( ν , Q 2 ) + O ( E 2 ) γ W = M 2 ν 0 0 ◆ M ∞ ∞ 8 α E  ✓ 3 ν ( ν + q ) + ν + 3 q � Z Z d ν ⌥ F (0) ν F (0) F ( − ) dQ 2 + O ( E 3 ) Re ⇤ odd γ W ( E ) = + 1 ⌥ 1 2 3 ( ν + q ) 3 2 Q 2 3 π NM 4 ν 0 ν thr ν 2 + Q 2 q = � 6

  7. 2. Universal inner RC Δ RV � 7

  8. Inner universal RC from DR ∞ ∞ dQ 2 M 2 W + Q 2 ∫ γ W = α π M ∫ d ν ν + 2 q W ( ν + q ) 2 F (0) Re □ even 3 ( ν , Q 2 ) 𝛿 W-box at zero energy M 2 ν 0 0 Re □ odd γ W ( E = 0) = 0 Connection to MS: rewrite in terms of the first Nachtmann moment of F 3 1 + 4 M 2 x 2 / Q 2 1 + 2 x = Q 2 1 3 (1, Q 2 ) = 4 3 ∫ M (0) 1 + 4 M 2 x 2 / Q 2 ) 2 F (0) 3 ( x , Q 2 ) dx 2 M ν (1 + 0 ∞ dQ 2 M 2 ∞ dQ 2 M 2 γ W = 3 α 2 π ∫ 3 (1, Q 2 ) = α 8 π ∫ W W W + Q 2 ) M (0) Re □ even W + Q 2 F MS ( Q 2 ) Q 2 ( M 2 M 2 0 0 F MS ( Q 2 ) = 12 Q 2 M (0) 3 (1, Q 2 ) MS loop fn. F(Q 2 ) directly related to M 3(0) SF F 3 - commutator of em and weak currents - insert complete set of on-shell hadronic states ∝ ∫ dxe iqx ⟨ p | [ J μ ,(0) W (0)] | n ⟩ ∼ ∫ dxe iqx ∑ F (0) ⟨ p | J μ ,(0) em ( x ), J ν ,+ em ( x ) | X ⟩⟨ X | J ν ,+ W (0) | n ⟩ 3 X � 8

  9. Input into dispersion integral γ γ W 2 = M 2 + 2 M ν − Q 2 Dispersion in energy: scanning hadronic intermediate states Dispersion in Q 2 : ν scanning dominant physics pictures ν = π ν ε µναβ ( ) ∑ 2 α β Q π δ + − µ ν = ν π ν Parton + pQCD 2 Boundaries between regions - approximate ~ 2 GeV Input to DR related (directly or indirectly) Born Res. Regge N π to experimentally accessible data +B.G +VMD 2 W 2 2 2 M ~ 5 GeV ( ) M + m π � 9

  10. Input into dispersion integral 2 Q Our parametrization of the needed SF follows from this diagram Parton + pQCD 2 ~ 2 GeV 8 Q 2 & 2 GeV 2 F pQCD , Born Res. Regge N π < F (0) 3 = F Born + +B.G +VMD F π N + F res + F R , Q 2 . 2 GeV 2 : 2 W 2 2 2 M ~ 5 GeV ( M + m ) π Born: elastic FF from e - , ν scattering data 4 M 2 + Q 2 + Q Z ∞ p dQ 2 = � α ⇤ V A, Born ⌘ 2 G A ( Q 2 ) G S M ( Q 2 ) γ W π ⇣p 4 M 2 + Q 2 + Q 0 π N: relativistic ChPT calculation plus nucleon FF Resonances: axial excitation from PCAC (Lalakulich et al 2006) - neutrino scattering isoscalar photo-excitation from MAID and PDG - electron and γ inelastic scattering Above resonance region: multiparticle continuum economically described by Regge exchanges � 10

  11. Inelastic states - low Q 2 , high W Scattering at high energy can be very effectively described by Regge exchanges ✓ ν ◆ α ρ F (0) , Regge ( ν , Q 2 ) = C R ( Q 2 ) 3 ν 0 Regge behavior in EW processes: hadron-like behavior of HE electroweak probes - Vector/Axial Vector Dominance is the proper language γ W-box: conversion of W ± (charged, I=1, axial) to γ (neutral, vector, I=0) requires charged vector exchange w. I=1 - ρ ± effective a 1 - ρ - ω vertex Inclusive ν scattering: conversion of W ± (charged, I=1, axial) to W ± (charged, I=1, axial) requires neutral vector exchange w. I=0 - ω effective a 1 - ω - ρ vertex Minimal model for both reactions - check with data. VM propagators 1/(M a2 +Q 2 )/(M ρ 2 +Q 2 ) ~ 1/Q 4 , more natural for hadronic amplitudes Compare to Bill’s F(Q 2 ) ~ 1/Q 2 at high-Q 2 � 11

  12. Input into dispersion integral F γ W (0) Unfortunately, no data can be obtained for 3 Data exist for the pure CC processes d 2 σ ν (¯ ν ) = G 2 y − y 2 F ME  ✓ 1 − y − Mxy ◆ ✓ ◆ � xy 2 F 1 + F 2 ± x F 3 dxdy 2 E 2 π + F ¯ σ ν p − σ ¯ ν p ∼ F ν p ν p = u p v ( x ) + d p v ( x ) 3 3 Z 1 dx ( u p v ( x ) + d p v ( x )) = 3 Gross-Llewellyn-Smith sum rule 0 Validate the model for CC process; apply an isospin rotation to obtain γ W F ν p +¯ 3 , low − Q 2 = F ν p +¯ + F ν p +¯ + F ν p +¯ + F ν p +¯ ν p ν p ν p ν p ν p 3 , el. 3 , π N 3 , R 3 , Regge 2 Q Low-W part of spectrum: Parton + pQCD neutrino data from MiniBooNE, Minerva, … 2 ~ 2 GeV - axial FF, resonance contributions, pi-N continuum Born Res. Regge N π +B.G +VMD High-W: Regge behavior F 3 ∼ q 𝓌 ∼ x - 𝛽 , 𝛽 ∼ 0.5-0.7 2 W 2 2 2 M ( ) ~ 5 GeV M + m π � 12

  13. Parameters of the Regge model from neutrino scattering Low Q 2 < 0.1 GeV 2 : Born + Δ (1232) dominate 3.5 Not fitted: modern data more precise but cover only limited energy range 3 Fit driven by 4 data points between 0.2 and 2 GeV 2 2.5 GLS SR Model & Uncertainty fully specified 2 - compare M&S vs This work 1.5 WA25 CCFR BEBC/GGM-PS 1 Regge + Born + Δ M 3WW (1,Q 2 ) pQCD MS: INT + Born + Δ 0.5 Isospin symmetry 0 0.01 0.1 1 10 100 Q ² (GeV ² ) M 3 γ W (1,Q 2 ) 0.08 Total 2 ) (0) (1,Q 2 ) / (1 + Q 2 / M w No Born MS M&S: integrand discontinuous at Q 2 = 2.25 GeV 2 0.06 Log scale for x-axis: integral = surface under the curve 0.04 □ (0) γ W = 0.00324 ± 0.00018 MS Total : □ (0) γ W = 0.00379 ± 0.00010 M 3 New Total : 0.02 Uncertainty reduced by almost factor 2; ~ 3-5 sigma shift from the old value 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ � 13 Q ² (GeV ² )

  14. 2. Nuclear structure modification of Δ RV C-Y Seng, MG, M J Ramsey-Musolf, arXiv: 1812.03352 � 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend