the future of gravitational wave astronomy
play

The future of gravitational-wave astronomy Paul Lasky - PowerPoint PPT Presentation

The future of gravitational-wave astronomy Paul Lasky 1,000,000,000 years ago 14th September 2015 - GW150914 Hanford, Washington (H1) Livingston, Louisiana (L1) 1.0 0.5 0.0 -0.5 -1.0 L1 observed Strain (10 -21 ) H1 observed (shifted,


  1. The future of gravitational-wave astronomy Paul Lasky

  2. 1,000,000,000 years ago

  3. 14th September 2015 - GW150914 Hanford, Washington (H1) Livingston, Louisiana (L1) 1.0 0.5 0.0 -0.5 -1.0 L1 observed Strain (10 -21 ) H1 observed (shifted, inverted) H1 observed Normalized amplitude 1.0 0.5 0.0 -0.5 -1.0 Numerical relativity Numerical relativity Reconstructed (wavelet) Reconstructed (wavelet) Reconstructed (template) Reconstructed (template) 0.5 0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 Time (s) Time (s)

  4. Binary Black 
 secondary mass [M ☉ ] 35 600 Hole Merger distance [Mpc] 400 200 25 0 0 90 180 30 40 50 orientation (deg) primary mass [M ☉ ] Sky location unknown Abbott et al. (2016) - GW150914

  5. fast forward — August 17, 2017 GW150914 GW101512 GW151226 GW170104 GW170814 GW170817

  6. August 17, 2017 GRB start Merger 2500 Lightcurve from Fermi /GBM (10 − 50 keV) Event rate (counts/s) 2250 2000 1750 1500 1250 Lightcurve from Fermi /GBM (50 − 300 keV) Event rate (counts/s) 1750 1500 1250 1000 750 Lightcurve from INTEGRAL/SPI-ACS Event rate (counts/s) 120000 ( > 100 keV) 117500 115000 112500 Gravitational-wave time-frequency map 400 Frequency (Hz) 300 So loud you can see it by eye 200 SNR = 32.4 100 (louder than GW150914) 50 − 10 − 8 − 6 − 4 − 2 0 2 4 6 Time from merger (s)

  7. 11 hours later Swope - the first of many! credit: Coulter et al. (2017)

  8. inference from gravitational-wave data alone 1.3 mass 2 [M � ] 3000 tidal deformability of secondary 1.0 2000 0.7 1.5 2.0 2.5 1000 mass 1 [M � ] 0 0 1000 2000 3000 tidal deformability of primary Abbott et al. (2017; GW170817)

  9. gravitational-wave transient catalog(ue) - 1 Abbott et al. 2018

  10. <latexit sha1_base64="fRxlI70PEIn1kj4otPjwQ8UVB8c=">AC3icbZBNS8MwGMdTX+d8q3r0EjYED2O0Iuhx6MWLMG9QFtKmqZbWNKUJBVG2d2LX8WLB0W8+gW8+W3Mth508w+BH/neZI8/yhjVGnH+bZWVtfWNzYrW9Xtnd29fvgsKtELjHpYMGE7EdIEUZT0tFUM9LPJE8YqQXja6n9d4DkYqK9F6PMxJwNEhpQjHSxgrtWuFLDjNJOZJjv+E3OFJqMgXvNvRFLHQ2nWn6cwEl8EtoQ5KtUP7y48FzjlJNWbmOs91Mh0USGqKGZlU/VyRDOERGhDPYIo4UEx2UCT4wTw0RIc1INZ+7viQJxpcY8Mp0c6aFarE3N/2perpPLoKBplmuS4vlDSc6gFnAaDIypJFizsQGEJTV/hXiIJMLaxFc1IbiLKy9D96zpOk37rzeuirjqIBjUAOnwAUXoAVuQBt0AaP4Bm8gjfryXqx3q2PeuKVc4cgT+yPn8AaFqaoA=</latexit> <latexit sha1_base64="fRxlI70PEIn1kj4otPjwQ8UVB8c=">AC3icbZBNS8MwGMdTX+d8q3r0EjYED2O0Iuhx6MWLMG9QFtKmqZbWNKUJBVG2d2LX8WLB0W8+gW8+W3Mth508w+BH/neZI8/yhjVGnH+bZWVtfWNzYrW9Xtnd29fvgsKtELjHpYMGE7EdIEUZT0tFUM9LPJE8YqQXja6n9d4DkYqK9F6PMxJwNEhpQjHSxgrtWuFLDjNJOZJjv+E3OFJqMgXvNvRFLHQ2nWn6cwEl8EtoQ5KtUP7y48FzjlJNWbmOs91Mh0USGqKGZlU/VyRDOERGhDPYIo4UEx2UCT4wTw0RIc1INZ+7viQJxpcY8Mp0c6aFarE3N/2perpPLoKBplmuS4vlDSc6gFnAaDIypJFizsQGEJTV/hXiIJMLaxFc1IbiLKy9D96zpOk37rzeuirjqIBjUAOnwAUXoAVuQBt0AaP4Bm8gjfryXqx3q2PeuKVc4cgT+yPn8AaFqaoA=</latexit> <latexit sha1_base64="fRxlI70PEIn1kj4otPjwQ8UVB8c=">AC3icbZBNS8MwGMdTX+d8q3r0EjYED2O0Iuhx6MWLMG9QFtKmqZbWNKUJBVG2d2LX8WLB0W8+gW8+W3Mth508w+BH/neZI8/yhjVGnH+bZWVtfWNzYrW9Xtnd29fvgsKtELjHpYMGE7EdIEUZT0tFUM9LPJE8YqQXja6n9d4DkYqK9F6PMxJwNEhpQjHSxgrtWuFLDjNJOZJjv+E3OFJqMgXvNvRFLHQ2nWn6cwEl8EtoQ5KtUP7y48FzjlJNWbmOs91Mh0USGqKGZlU/VyRDOERGhDPYIo4UEx2UCT4wTw0RIc1INZ+7viQJxpcY8Mp0c6aFarE3N/2perpPLoKBplmuS4vlDSc6gFnAaDIypJFizsQGEJTV/hXiIJMLaxFc1IbiLKy9D96zpOk37rzeuirjqIBjUAOnwAUXoAVuQBt0AaP4Bm8gjfryXqx3q2PeuKVc4cgT+yPn8AaFqaoA=</latexit> <latexit sha1_base64="fRxlI70PEIn1kj4otPjwQ8UVB8c=">AC3icbZBNS8MwGMdTX+d8q3r0EjYED2O0Iuhx6MWLMG9QFtKmqZbWNKUJBVG2d2LX8WLB0W8+gW8+W3Mth508w+BH/neZI8/yhjVGnH+bZWVtfWNzYrW9Xtnd29fvgsKtELjHpYMGE7EdIEUZT0tFUM9LPJE8YqQXja6n9d4DkYqK9F6PMxJwNEhpQjHSxgrtWuFLDjNJOZJjv+E3OFJqMgXvNvRFLHQ2nWn6cwEl8EtoQ5KtUP7y48FzjlJNWbmOs91Mh0USGqKGZlU/VyRDOERGhDPYIo4UEx2UCT4wTw0RIc1INZ+7viQJxpcY8Mp0c6aFarE3N/2perpPLoKBplmuS4vlDSc6gFnAaDIypJFizsQGEJTV/hXiIJMLaxFc1IbiLKy9D96zpOk37rzeuirjqIBjUAOnwAUXoAVuQBt0AaP4Bm8gjfryXqx3q2PeuKVc4cgT+yPn8AaFqaoA=</latexit> cut-o ff from pulsational mass gap (?) pair instability supernovae? primary mass [ M � ] Abbott et al. 2018 — Colm Talbot (Monash)

  11. LIGO-Virgo Second Observing Run January 2017 August 2017

  12. LIGO-Virgo Third Observing Run April 1 —

  13. credit: Abhirup Ghosh

  14. All events are open! https://gracedb.ligo.org/latest/ GW190425 false-alarm rate: ~1 per 70,000 years distance ~ 156 ± 41 Mpc parameter-estimation rota: Greg Ashton (Monash)

  15. All events are open! https://gracedb.ligo.org/latest/ GW190426 false-alarm rate: ~1 per 1.6 years distance ~ 377 ± 100 Mpc

  16. • Bilby: parameter-estimation for the masses • OzHF: An Australian high-frequency gravitational-wave detector

  17. “Bayesian parameter estimation is the future of gravitational-wave astronomy” Matilda B. Bilby* *not a real quote (also not a real Bilby)

  18. The user - friendly Bayesian inference library Ashton , Hübner , PL , Talbot + (2019) A versatile parameter - estimation code being adopted for production science in next LIGO observing run git . ligo . org / lscsoft / bilby /

  19. Our Aims : • Lower the entry point for doing gravitational - wave and astrophysics Bayesian calculations - user friendly , intuitive syntax - robust , yet adaptable code base - open source - well documented - many examples git . ligo . org / lscsoft / bilby /

  20. git . ligo . org / lscsoft / bilby / secondary mass [M � ] 35 30 open gravitational- 25 wave data 
 35 40 45 primary mass [M � ] luminosity distance [Mpc] GW150914 600 400 200 Ashton, Hübner, PL, Talbot + (2019) 1 2 3 inclination angle

  21. git . ligo . org / lscsoft / bilby / synthetic neutron star injections Ashton, Hübner, PL, Talbot + (2019)

  22. git . ligo . org / lscsoft / bilby / gravitational-wave memory 40 all h S/N " h i > 2 30 (ln Bayes Factor) tot 1 with memory ������ ��� � �� � 20 0 no memory 10 -1 -0.3 -0.2 -0.1 0 0.1 ���� ��� 0 20 40 60 80 100 number of events Hübner, PL, Thrane, Talbot (in prep.)

  23. git . ligo . org / lscsoft / bilby / neutron star pulse-profile modelling The 2016-vela glitch Ashton, PL, Graber, Palfreyman (Nature Astronomy; submitted)

  24. git . ligo . org / lscsoft / bilby / x-ray light curves of gamma-ray bursts do millisecond magnetars exist? PL, Leris, Rowlinson & Glampedakis (2017) Sarin, PL, Ashton (2019)

  25. The user - friendly Bayesian inference library Ashton , Hübner , PL , Talbot + (2019) A versatile parameter - estimation code being adopted for production science in next LIGO observing run git . ligo . org / lscsoft / bilby /

  26. • Bilby: parameter-estimation for the masses • OzHF: An Australian high-frequency gravitational-wave detector

  27. GW170817 - the first binary neutron star merger what didn’t we learn? • short gamma-ray bursts are neutron star mergers • jet formation and topology • r-process nucleosynthesis • (there’s gold in them there hills…) • cosmology… tidal deformability, Λ 2 • weak constraints on neutron star equation of state tidal deformability, Λ 1

  28. GW170817 - the first binary neutron star merger what did we learn? • How matter behaves at supra-nuclear densities! • What happened after the merger? Temperature Density

  29. Introducing OzHF Introducing OzHF • Scale: $50M - $100M aLIGO • (cf ~$1B for ET/CE) • Build the detector around the science case: A+ OzHF neutron stars • Design concept in progress cosmic • Design paper on its way explorer

  30. OzHF: a matter machine OzHF: a matter machine Tidal effects All equation of state information comes from very late in the inspiral

  31. OzHF: a matter machine OzHF: a matter machine post-merger Want to learn about quantum chromodynamics? Do it here!

  32. OzHF fiducial baseline • 2km arms • 20kg silicon test masses • cooling: 123K • 2 micron wavelength • 500 W input power • ?? 5 MW in arms • 10 dB squeezing • Neglect low-frequency isolation 5

  33. preliminary design

  34. sensitivity comparison

  35. Australian HF Detector Science Case • Binary Black Holes � • Binary Neutron Stars � Temperature • Supernovae ? • Isolated Neutron Stars ? • Cosmology � • Exotic ? OzHF is here! Project Scale • $50M - $100M 10 15 density • Scalable Infrastructure • Location? Paul Lasky 14

  36. The future of gravitational-wave astronomy Paul Lasky

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend