discontinuous galerkin and spectral element method for
play

Discontinuous Galerkin and spectral element method for rotating - PowerPoint PPT Presentation

Discontinuous Galerkin and spectral element method for rotating shallow water equation on the sphere Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065,


  1. Discontinuous Galerkin and spectral element method for rotating shallow water equation on the sphere Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India http://cpraveen.github.io Computational Science Symposium Department of Computational and Data Sciences, IISc Bangalore 16-18 March 2017 Supported by Airbus Foundation Chair at TIFR-CAM, Bangalore http://math.tifrbng.res.in/airbus-chair 1 / 56

  2. Shallow water model 1 , 2 • Shallow atmosphere/ocean ◮ 3 / 4 of total mass within 11 km ◮ Circumference = 40,000 km • Assumptions ◮ Incompressible flow ◮ Hydrostatic equilibrium in radial direction 1 Pedlosky, Geophysical Fluid Dynamics 2 Vallis, Atmospheric and Oceanic Fluid Dynamics 2 / 56

  3. Rotation, spherical coordinates Fig. 2.3 The spherical coordinate sys- tem. The orthogonal unit vectors i , j and k point in the direction of in- creasing longitude λ , latitude ϑ , and altitude z . Locally, one may apply a Cartesian system with variables x , y and z measuring distances along i , j and k . from Vallis, Atmospheric and Oceanic Fluid Dynamics Radius: R = 6 . 37122 × 10 6 m , Rotation rate: Ω = 7 . 292 × 10 − 5 s − 1 Acc. due to gravity: g = 9 . 80616 m · s − 2 3 / 56

  4. Rotating shallow water model v = velocity , H = height of atm. rel. to mean surface H s = height of ground rel. to mean surface , D = H − H s = depth Vector invariant form ∂ v ∂t + ∇ Φ + ( ω + f ) v ⊥ = 0 ∂D ∂t + ∇ · ( v D ) = 0 where K = 1 2 | v | 2 , Φ = gH + K, ω = k · ∇ × v v ⊥ = k × v , f = 2Ω sin θ (Note that k · v = 0 ) 4 / 56

  5. Energy is conserved � ∂ v � � ∂D � ∂t + ∇ Φ + ( ω + f ) v ⊥ D v · + Φ ∂t + ∇ · ( v D ) = 0 leads to a conservation law ∂ � 1 2 D | v | 2 + 1 � �� gH + 1 � � 2 gH 2 2 | v | 2 + ∇ · v D = 0 ∂t Total energy is conserved � 1 � � 2 D | v | 2 + 1 2 gH 2 d s = const. S 5 / 56

  6. Vorticity dynamics Absolute vorticity η := ω + f Vorticity equation: Take curl of the velocity equation ∂η � ∂t + ∇ · ( v η ) = 0 = ⇒ η d s = const. S Potential vorticity q := η D PV is advected by the flow ∂q ∂t + v · ∇ q = 0 q is constant along streamlines = ⇒ minimum/maximum principle S q ( x ′ , y ′ , z ′ , 0) ≤ q ( x, y, z, t ) ≤ max q ( x ′ , y ′ , z ′ , 0) min S 6 / 56

  7. Potential enstrophy is conserved Another conservation law � η 2 � η 2 ∂ � � + ∇ · = 0 D v ∂t D Potential enstrophy is conserved η 2 � � Dq 2 d s = const. D d s = S S Infinite number of conserved quantities (Casimirs) � DF ( q )d s S for any function F , e.g., � Dq i d s = const. , i = 0 , 1 , 2 , . . . , S 7 / 56

  8. Conservation form Momentum and mass conservation ∂ � D v ⊗ v + 1 � 2 gD 2 I ∂t ( D v ) + ∇ · = − f ( k × D v ) − gD ∇ H s ∂D ∂t + ∇ · ( D v ) = 0 Finite volume, SEM, DG 8 / 56

  9. Vorticity-divergence form (Z grid) Tangential divergence: δ = ∇ · v ∂D ∂t + ∇ · ( v D ) = 0 ∂η ∂t + ∇ · ( v η ) = 0 ∂δ ∂t − ∇ × ( v η ) + ∇ 2 ( gH + | v | 2 / 2) = 0 −∇ 2 ψ = − ( η − f ) −∇ 2 χ = − δ ∇ χ + ∇ ⊥ ψ = v Usually solved with global pseudo-spectral methods 3 or finite volume method 3 Hack & Jakob (1992) 9 / 56

  10. Hyperbolic property In Cartesian coordinates, with the z -axis along the axis of rotation ∂ U ∂ U ∂ U ∂y + ˜ ∂t + A 1 ∂x + A 2 S = 0 (1) where       v 1 v 1 0 g v 2 0 0  ,  , U = v 2 A 1 = 0 v 1 0 A 2 = 0 v 2 g     D D 0 v 1 0 D v 2 For any unit vector n = ( n 1 , n 2 ) −√ gn 1 √ gn 1    − n 2  v n 0 gn 1 −√ gn 2 √ gn 2  , A 1 n 1 + A 2 n 2 = 0 v n gn 2 R = n 1 √ √    Dn 1 Dn 2 v n 0 D D � � Eigenvalues: v n , v n − gD, v n + gD 10 / 56

  11. Riemann solver based numerical flux ∂ U ∂t + ∂ F ∂x = 0 with initial condition � U l x < 0 U ( x, 0) = x > 0 U r Linearized problem (Roe, 1981) ∂ U ∂t + A ( U l , U r ) ∂ U A = R Λ R − 1 ∂x = 0 , Solve Riemann problem exactly and compute flux at x = 0 F lr = 1 2[ F ( U l ) + F ( U r )] − 1 2 R | Λ | R − 1 ( U r − U l ) 11 / 56

  12. Previous works 4 • Finite volume Arakawa & Lamb (1981), Salmon (2007), Eldred & Randall (2016), Toy & Nair (2017) • DG, conservation form Giraldo et al. (2002) • DG, vector invariant form Nair et al. (2004) • SEM Taylor et al. (1997), Giraldo (2001), Taylor & Fournier (2010) • Compatible finite elements Natale et al. (2016) 4 See review article by Marras et al., Arch Comp Meth Eng, 2015 12 / 56

  13. Cubed-sphere grid 5 ( X 1 , X 2 ) ∈ [ − a, + a ] 2 ( x 1 , x 2 , x 3 ) ∈ S 5 Sadourny (1972), Ronchi et al. (1996) 13 / 56

  14. Cubed-sphere grid ( X 1 , X 2 ) ∈ [ − a, + a ] 2 ( x 1 , x 2 , x 3 ) ∈ S 14 / 56

  15. Cubed-sphere grid ( χ 1 , χ 2 ) ( X 1 , X 2 ) ( x 1 , x 2 , x 3 ) χ i = arctan( X i /a ) ∈ [ − π/ 4 , π/ 4] , i = 1 , 2 X i = a tan χ i ∈ [ − a, + a ] 15 / 56

  16. Cubed-sphere map From Nair et al., MWR, 133, 2005 Cube: [ − a, + a ] 3 √ a = R/ 3 � � On P 1 : ( x 1 , x 2 , x 3 ) = R x 2 x 1 , x 3 r ( a, X 1 , X 2 ) , ( X 1 , X 2 ) = a x 1 16 / 56

  17. Finite element space • T h = cubed sphere grid • ˆ T = [0 , 1] × [0 , 1] is the reference cell • Each cell T ∈ T h obtained by mapping reference cell ˆ T F T : ˆ T → T, ( ξ 1 , ξ 2 ) → ( χ 1 , χ 2 ) → ( x 1 , x 2 , x 3 ) • Q N = 2-d tensor product polynomials of degree at most N • Space of broken polynomials for scalar and vector functions V N h = { ψ ∈ L 2 ( S ) : ψ | T ◦ F − 1 W N h = V N h × V N h × V N ∈ Q N } , T h • Lagrange polynomials using Gauss-Legendre nodes • Same nodes used for quadrature 17 / 56

  18. Tangential gradient 6 Coordinates ξ = ( ξ 1 , ξ 2 ) ∈ ˆ T, x = ( x 1 , x 2 , x 3 ) ∈ S First fundamental form g ij = ∂ x · ∂ x , G = [ g ij ] ∂ξ i ∂ξ j and its inverse g ij = [ G − 1 ] ij Tangential gradient 2 2 g ij ∂x d ∂φ � � ( ∇ φ ) d = , d = 1 , 2 , 3 ∂ξ i ∂ξ j i =1 j =1 6 Dziuk & Elliott, Acta Numerica, 2013 18 / 56

  19. DG for v − D model For each cell T ∈ T h d � � v h · ϕ h d s − Φ( v h , D h , H s ) ∇ · ϕ h d s d t T T � � ˆ F v · ϕ − ( ω h + f ) v ⊥ ∀ ϕ h ∈ W N + h d σ + h · ϕ h d s = 0 , h ∂T T d � � � ˆ F D ψ − ∀ ψ h ∈ V N D h ψ h d s − v h D h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T F v , ˆ ˆ F D are numerical fluxes obtained from Rusanov scheme 1 2(Φ − + Φ + ) n − − 1 2 λ ( v + − v − ) ˆ F v = 1 2( D − v − + D + v + ) n − − 1 2 λ ( D + − D − ) ˆ F D = where λ = max {| v − · n − | + gD − , | v + · n + | + � � gD + } 19 / 56

  20. DG for v − D model Vorticity computed locally on each cell � � � h n − · ˆ ∇ ψ h · v ⊥ ψ − v ⊥ ∀ ψ h ∈ V N ω h ψ h d s = h d s − h d σ, h T T ∂T where v = 1 2( v − + v + ) ˆ 20 / 56

  21. DG for v − D − η model For each cell T ∈ T h d � � v h · ϕ h d s − Φ( v h , D h , H s ) ∇ · ϕ h d s d t T T � � ˆ F v · ϕ − η h v ⊥ ∀ ϕ h ∈ W N + h d σ + h · ϕ h d s = 0 , h ∂T T d � � � ˆ F D ψ − ∀ ψ h ∈ V N D h ψ h d s − v h D h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T d � � � F η ψ − ˆ ∀ ψ h ∈ V N η h ψ h d s − v h η h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T F v , ˆ ˆ F D , ˆ F η are numerical fluxes obtained from a Riemann solver. 21 / 56

  22. Numerical flux for v − D − η model In Cartesian coordinates, with the z -axis along the axis of rotation ∂ U ∂ U ∂ U ∂y + ˜ ∂t + A 1 ∂x + A 2 S = 0 (2) where  v 1   v 1 0 g 0   v 2 0 0 0  v 2 0 v 1 0 0 0 v 2 g 0       U =  , A 1 =  , A 2 =       D D 0 v 1 0 0 D v 2 0     η η 0 0 v 1 0 η 0 v 2 For any unit vector n = ( n 1 , n 2 )  v n 0 gn 1 0  0 v n gn 2 0   A 1 n 2 + A 2 n 2 =   Dn 1 Dn 2 v n 0   ηn 1 ηn 2 0 v n 22 / 56

  23. Numerical flux for v − D − η model � � Eigenvalues: v n , v n , v n − gD, v n + gD Corresponding linearly independent eigenvectors −√ gDn 1 √ gDn 1   0 − n 2 −√ gDn 2 √ gDn 2 0 n 1   R =   0 0 D D   1 0 η η Numerical flux (Φ − + Φ + ) n − v + 1 − v −     1 1 (Φ − + Φ + ) n − v + 2 − v − F = 1  − 1 ˆ 2 R | Λ | R − 1  2   2  ( D − v − + D + v + ) · n − D + − D −     2    ( η − v − + η + v + ) · n − η + − η − Rotate velocity flux to global ( x 1 , x 2 , x 3 ) coordinates. 23 / 56

  24. Time integration: ˙ U = R ( U ) 3-stage, strong stability preserving, Runge-Kutta scheme U n − ∆ t · R ( U n ) U (1) = 3 4 U n + 1 4[ U n + ∆ t · R ( U (1) )] U (2) = 1 3 U n + 2 3[ U n + ∆ t · R ( U (2) )] U n +1 = After each stage, project the velocity to tangent plane at all GL points. CFL condition CFL h T ∆ t = 2 N 2 + 1 min �| v | + √ gD � L ∞ ( T ) T ∈T h 24 / 56

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend