the dissipation of poynting flux in pulsar winds
play

The dissipation of Poynting-flux in pulsar winds John Kirk - PowerPoint PPT Presentation

The dissipation of Poynting-flux in pulsar winds John Kirk Max-Planck-Institut f ur Kernphysik Heidelberg, Germany Collaborators: O. Skjraasen, Yuri Lyubarsky, Yves Gallant p.1/15 Preliminaries Poynting dominated: Poynting flux


  1. The dissipation of Poynting-flux in pulsar winds John Kirk Max-Planck-Institut f¨ ur Kernphysik Heidelberg, Germany Collaborators: O. Skjæraasen, Yuri Lyubarsky, Yves Gallant – p.1/15

  2. Preliminaries Poynting dominated: Poynting flux σ = particle-born flux ≫ 1 Wind: γ fms ≈ √ σ γ > Possible examples: GRB, Jets from AGN. . . Best example: pulsar wind – p.2/15

  3. Pulsar winds The Crab Nebula Central star is source of particles and magnetic field (Piddington 1957) and waves (Rees & Gunn 1974). • Few particles: magnetic dipole radiation? Damping ⇒ propagation only for ω pe < Ω . For Crab: r > 10 8 r L (e.g., Melatos & Melrose 1996) • Many particles, MHD wind + shock – p.3/15

  4. The σ problem Michel’s parameter µ = γσ : wind luminosity µ = mass-loss rate × c 2 “Standard” estimate for Crab: µ ≈ 10 6 . But, including radio electrons: 5 × 10 38 erg/s µ = 10 40 pairs/s 10 4 ≈ At fast magnetosonic point γ = µ 1 / 3 ≈ 20 , σ ≈ 400 – p.4/15

  5. The σ problem II • Force-free axisymmetric fl ows accelerate: Γ ∝ r (Buckley 1977, Contopoulos & Kazanas 2002) in subsonic region ( γ < √ σ ) • Steady, relativistic, axisymmetric winds are quasi-spherical, e.g., cold spherical (monopole) wind: n ∝ 1 /r 2 B φ ∝ 1 /r No acceleration Γ = constant ⇒ σ = constant But, at inner edge of Nebula σ ≈ 10 − 3 . ⇒ dissipation required – p.5/15

  6. Striped wind Oblique, split-monopole solution, Bogovalov A&A 349, 1017 (1999) Meridional plane Equatorial plane The striped wind (Coroniti 1990) – p.6/15

  7. ✁ ✡ � ✁ ✂ ✄ ✂ ☎ ✆ ☎ ✝ ✞ � ✂ ✟ ✠ Current sheets Governing equations: continuity, energy, entropy. Key question: What controls the thickness of the sheets? – p.7/15

  8. Slow dissipation Ampère’s law in comoving frame: � c � 2 B ′ ℓ I ′ = 4 π 2 en ′ ( ℓλ ′ ) c � β d � < Minimum sheet thickness for � β d � = 1 . a = λ D β d Coroniti (1980) (sheet thickness > gyro radius = T/eB ′ ), Michel (1994), Lyubarsky & Kirk (2001). – p.8/15

  9. Slow dissipation, II r − 3 p ∝ r − 1 / 2 T ∝ r 1 / 2 ∆ ∝ r 1 / 2 Γ ∝ • Hot plasma performs work in accelerating the fl ow • Dissipation timescale dilated r max ˆ L = L ( π 2 e 2 /m 2 c 5 ) , = ˆ L 1 / 2 ( = 1 . 5 × 10 22 for Crab) r L – p.9/15

  10. Tearing-mode limited dissipation • Current sheet unstable — e.g., tearing mode at rate γ t : thinner sheet ⇒ faster growth • Complex fl ow with reconnection sites inside annihilation region • Overall expansion speed cβ exp = aγ t � 3 / 2 � λ D β exp = a (Lyubarsky 1996) – p.10/15

  11. Tearing-mode limited dissipation II r − 17 / 6 p ∝ r − 5 / 12 T ∝ r 5 / 12 ∆ ∝ r 5 / 12 Γ ∝ r max = µ 4 / 5 ˆ L 3 / 10 r L Faster than “slow dissipation” for µ < ˆ L 1 / 4 ( = 3 . 5 × 10 5 for Crab) – p.11/15

  12. Fast dissipation How rapidly can the dissipation zone expand? • Fast m.s. speed in external medium? Drenkhahn (2002) • Total fl ux conserved ⇒ causal connection required ⇒ β exp < β s � � � 1 T β exp = Min √ 3 , mc 2 – p.12/15

  13. Fast dissipation, II Relativistic T : r − 8 / 3 p ∝ r − 1 / 3 T ∝ r 1 / 3 ∆ ∝ r 1 / 3 Γ ∝ r max = 0 . 1 µ 2 r L – p.13/15

  14. Fast dissipation, III L 1 / 4 no • Faster than “slow dissipation” for µ < 10ˆ consistent dissipative solution otherwise. • For Crab, ≈ 10% of Poynting fl ux dissipated in relativistic regime • Remaining 90% dissipated inside termination shock for µ = 2 × 10 4 – p.14/15

  15. Conclusions • Dissipation in a wind is slowed by free expansion • Minimum mass-loading required for complete dissipation • Provides acceleration to γ = µ , with γ ∝ r q , q = 1 / 3 to 1 / 2 . • “Conventional” µ estimates for Crab too high for complete dissipation • Low µ and maximum rate permits ∼ 10% dissipation by r = 10 6 r L , complete dissipation by 2 × 10 9 r L — inside the termination shock – p.15/15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend