on the effective string theory of confining flux tubes
play

On the effective string theory of confining flux tubes Michael Teper - PowerPoint PPT Presentation

On the effective string theory of confining flux tubes Michael Teper (Oxford) - GGI 2012 Flux tubes and string theory : effective string theories - recent analytic progress fundamental flux tubes in D=2+1 fundamental flux tubes in D=3+1


  1. On the effective string theory of confining flux tubes Michael Teper (Oxford) - GGI 2012 • Flux tubes and string theory : effective string theories - recent analytic progress fundamental flux tubes in D=2+1 fundamental flux tubes in D=3+1 higher representation flux tubes • Concluding remarks 1

  2. gauge theory and string theory ↔ A long history ... • Veneziano amplitude • ’t Hooft large- N – genus diagram expansion • Polyakov action • Maldacena ... AdS/CFT/QCD ... at large N , flux tubes and perhaps the whole gauge theory can be described by a weakly-coupled string theory 2

  3. calculate the spectrum of closed flux tubes − → close around a spatial torus of length l : • flux localised in ‘tubes’; long flux tubes, l √ σ ≫ 1 look like ‘thin strings’ • at l = l c = 1 /T c there is a ‘deconfining’ phase transition: 1st order for N ≥ 3 in D = 4 and for N ≥ 4 in D = 3 • so may have a simple string description of the closed string spectrum for all l ≥ l c • most plausible at N → ∞ where scattering, mixing and decay, e.g string → string + glueball, go away • in both D=2+1 and D=3+1 Note: the static potential V ( r ) describes the transition in r between UV (Coulomb potential) and IF (flux tubes) physics; potentially of great interest as N → ∞ . 3

  4. Some References recent analytic work: Luscher and Weisz, hep-th/0406205; Drummond, hep-th/0411017. Aharony with Karzbrun, Field, Klinghoffer, Dodelson, arXiv:0903.1927; 1008.2636; 1008.2648; 1111.5757; 1111.5758 recent numerical work: closed flux tubes: Athenodorou, Bringoltz, MT, arXiv:1103.5854, 1007.4720, ... ,0802.1490, 0709.0693 open flux tubes and Wilson loops: Caselle, Gliozzi, et al ..., arXiv:1202.1984, 1107.4356, ... also Brandt, arXiv:1010.3625; Lucini,..., 1101.5344; ...... 4

  5. historical aside: for the ground state energy of a long flux tube, not only l →∞ E 0 ( l ) = σl but also the leading correction is ‘universal’ E 0 ( l ) = σl − π ( D − 2) 1 l + O (1 /l 3 ) 6 the famous Luscher correction (1980/1) 5

  6. calculate the energy spectrum of a confining flux tube winding around a spatial torus of length l , using correlators of Polyakov loops (Wilson lines): τ →∞ � l † n,p ⊥ c n ( p ⊥ , l ) e − E n ( p ⊥ ,l ) τ p ( τ ) l p (0) � = � ∝ exp {− E 0 ( l ) τ } in pictures ✻ ✻ x l † l p − → ↑ p l → t ❄ ❄ ✛ ✲ τ a flux tube sweeps out a cylindrical l × τ surface S · · · integrate over these world dSe − S eff [ S ] � ∝ sheets with an effective string action cyl = l × τ 6

  7. ⇒ � c n ( p ⊥ , l ) e − E n ( p ⊥ ,l ) τ = � l † � dSe − S eff [ S ] p ( τ ) l p (0) � = n,p ⊥ cyl = l × τ where S eff [ S ] is the effective string action for the surface S ⇒ the string partition function will predict the spectrum E n ( l ) – just a Laplace transform – but will be constrained by the Lorentz invariance encoded in E n ( p ⊥ , l ) Luscher and Weisz; Meyer 7

  8. this can be extended from a cylinder to a torus (Aharony) � e − E n ( p,l ) τ = e − E n ( p,τ ) l = Z w =1 � � dSe − S eff [ S ] torus ( l, τ ) = n,p n,p T 2 = l × τ where p now includes both transverse and longitudinal momenta ↔ ‘closed-closed string duality’ 8

  9. Example: Gaussian approximation: � τ � l 0 dx 1 S G,eff = σlτ + 0 dt 2 ∂ α h∂ α h ⇒ dSe − S G,eff [ S ] = e − σlτ | η ( q ) | − ( D − 2) n e − E n ( τ ) l = : q = e − πl/τ � Z cyl ( l, τ ) = � cyl = l × τ 1 24 � ∞ n =1 (1 − q n ) in terms of the Dedekind eta function: η ( q ) = q ⇒ open string energies and degeneracies E n ( τ ) = στ + π 1 � � n − 24 ( D − 2) τ – the famous universal Luscher correction(1981) Also : modular invariance of η ( q ) → closed string energies, ˆ E n ( l ) = σl + 4 π 1 24 ( D − 2) } + O (1 /l 3 ) l { n − 9

  10. So what do we know today? any S eff ⇒ ground state energy � 1 − { π ( D − 2) } 2 σl 3 − { π ( D − 2) } 3 � σl − π ( D − 2) 1 1 l →∞ E 0 ( l ) = σ 2 l 5 + O l 7 6 l 72 432 with universal terms: � 1 � ◦ O Luscher correction, ∼ 1980 l � 1 � ◦ O Luscher, Weisz; Drummond, ∼ 2004 l 3 � 1 � ◦ O Aharony et al, ∼ 2009-10 l 5 and similar results for E n ( l ), but only to O (1 /l 3 ) in D = 3 + 1 ∼ simple free string theory : Nambu-Goto in flat space-time up to O (1 /l 7 ) 10

  11. Nambu-Goto free string theory D Se − κA [ S ] � spectrum (Arvis 1983, Luscher-Weisz 2004) : � 2 . � 2 πq E 2 ( l ) = ( σ l ) 2 + 8 πσ � � N L + N R − D − 2 + 2 24 l p = 2 πq/l = total momentum along string; N L , N R = sum left and right ‘phonon’ momentum: N L = � N R = � n L ( k ) k, n R ( k ) k, N L − N R = q k> 0 k> 0 so the ground state energy is: � 1 / 2 � 1 − π ( D − 2) 1 E 0 ( l ) = σl 3 σl 2 11

  12. a n L ( k ) a n R ( k ) P = ( − 1) number phonons state = � | 0 � , k − k k> 0 lightest p = 0 states: | 0 � a 1 a − 1 | 0 � a 2 a − 2 | 0 � , a 2 a − 1 a − 1 | 0 � , a 1 a 1 a − 2 | 0 � , a 1 a 1 a − 1 a − 1 | 0 � · · · lightest p � = 0 states: a 1 | 0 � P = − , p = 2 π/l a 2 | 0 � P = − , p = 4 π/l a 1 a 1 | 0 � P = + , p = 4 π/l ⇒ 12

  13. ⇒ lightest states with p = 0 solid lines: Nambu-Goto 14 12 E √ σ 10 8 6 4 2 0 1 2 3 4 5 6 7 8 l √ σ gs : P=+ . ex1 : P=+. ex2: 2 × P=+ and 2 × P=- 13

  14. So what does one find numerically? results here are from: • D = 2 + 1 Athenodorou, Bringoltz, MT, arXiv:1103.5854, 0709.0693 • D = 3 + 1 Athenodorou, Bringoltz, MT, arXiv:1007.4720 • higher rep Athenodorou, MT, in progress and we start with: D = 2 + 1 , SU (6) , a √ σ ≃ 0 . 086 i.e N ∼ ∞ , a ∼ 0 14

  15. lightest 8 states with p = 0 P = +( • ) , P = − ( ◦ ) 14 12 E √ σ 10 8 6 4 2 0 1 2 3 4 5 6 7 8 l √ σ solid lines: Nambu-Goto ground state → σ : only parameter 15

  16. lightest levels with p = 2 πq/l, 4 πq/l P = − 12 E 10 √ σ 8 6 4 2 0 1 2 3 4 5 6 l √ σ Nambu-Goto : solid lines 16

  17. Now, when Nambu-Goto is expanded the first few terms are universal e.g. ground state � 1 � 1 − π ( D − 2) 2 E 0 ( l ) = σl 3 σl 2 � 1 − { π ( D − 2) } 2 σl 3 − { π ( D − 2) } 3 σl − π ( D − 2) 1 1 � l>l 0 = σ 2 l 5 + O l 7 6 l 72 432 √ √ σ = 3 /π ( D − 2); and also for excited states for l √ σ > l n √ σ ∼ � where l 0 8 πn ⇒ is the striking numerical agreement with Nambu-Goto no more than an agreement with the sum of the known universal terms? 17

  18. NO! universal terms: solid lines Nambu-Goto : dashed lines 14 12 E √ σ 10 8 6 4 2 0 1 2 3 4 5 6 7 8 l √ σ 18

  19. = ⇒ • NG very good down to l √ σ ∼ 2, i.e energy fat short flux ‘tube’ ∼ ideal thin string • NG very good far below value of l √ σ where the power series expansion diverges, i.e. where all orders are important ⇒ universal terms not enough to explain this agreeement ... • no sign of any non-stringy modes, e.g. µ ∼ M G / 2 ∼ 2 √ σ E ( l ) ≃ E 0 ( l ) + µ where e.g. = ⇒ ... in more detail ... 19

  20. but first an ‘algorithmic’ aside – calculating energies • deform Polyakov loops to allow non-trivial quantum numbers • block or smear links to improve projection on physical excitations • variational calculation of best operator for each energy eigenstate • huge basis of loops for good overlap on a large number of states C ( t ) ≃ c n e − E n ( l ) t already for small t • i.e. for example: 20

  21. Operators in D=2+1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 21

  22. 0 . 9 0 . 8 aE eff ( n t ) 0 . 7 0 . 6 0 . 5 0 . 4 0 . 3 0 . 2 0 . 1 0 0 2 4 6 8 10 12 14 16 18 20 n t abs gs l = 16 , 24 , 32 , 64 a ( ◦ ); es p=0 P=+ ( • ); gs p = 2 π/l, P = − ( ⋆ ); gs, es p = 0 , P = − ( ⋄ ) 22

  23. lightest P = − states with p = 2 πq/l : q = 0 , 1 , 2 , 3 , 4 , 5 a q | 0 � 20 18 E √ σ 16 14 12 10 8 6 4 2 0 1 2 3 4 5 6 l √ σ ( ap ) 2 → 2 − 2 cos( ap ) : dashed lines Nambu-Goto : solid lines 23

  24. ground state deviation from various ‘models’ D = 2 + 1 0 . 02 E 0 − E model σl 0 − 0 . 02 − 0 . 04 − 0 . 06 1 2 3 4 5 6 l √ σ model = Nambu-Goto, • , universal to 1 /l 5 , ◦ , to 1 /l 3 , ⋆ , to 1 /l , +, just σl , × lines = plus O (1 /l 7 ) correction 24

  25. = ⇒ ◦ for l √ σ � 2 agreement with NG to � 1 / 1000 moreover ◦ for l √ σ ∼ 2 contribution of NG to deviation from σl is � 99% despite flux tube being short and fat ◦ and leading correction to NG consistent with ∝ 1 /l 7 as expected from current universality results 25

  26. 8 χ 2 7 n d f 6 5 4 3 2 1 0 1 3 5 7 9 11 13 γ χ 2 per degree of freedom for the best fit E 0 ( l ) = E NG c ( l ) + 0 l γ 26

  27. first excited q = 0 , P = + state D = 2 + 1 0 . 2 E − E NG √ σ 0 − 0 . 2 − 0 . 4 − 0 . 6 − 0 . 8 − 1 1 2 3 4 5 6 l √ σ fits: � − 2 . 75 c c 1 + 25 . 0 � - dotted curve; - solid curve ( l √ σ ) 7 ( l √ σ ) 7 l 2 σ 27

  28. q = 1 , P = − ground state SU (6) , D = 2 + 1 0 . 3 0 . 2 E − E NG √ σ 0 . 1 0 − 0 . 1 − 0 . 2 − 0 . 3 − 0 . 4 − 0 . 5 1 2 3 4 5 6 l √ σ fits: � − 2 . 75 c c 1 + 25 . 0 � solid curve; : dashed curve ( l √ σ ) 7 ( l √ σ ) 7 l 2 σ 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend