the bang bang funnel controller
play

The bang-bang funnel controller Stephan Trenn (joint work with - PowerPoint PPT Presentation

The bang-bang funnel controller Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany Arbeitstreffen SPP 1305 Event based control, M unchen 1. Oktober 2012 Introduction


  1. The bang-bang funnel controller Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany Arbeitstreffen SPP 1305 “Event based control”, M¨ unchen 1. Oktober 2012

  2. Introduction Relative degree one case Higher relative degree Content Introduction 1 Relative degree one case 2 Higher relative degree 3 Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  3. Introduction Relative degree one case Higher relative degree Feedback loop x = F ( x , u ) ˙ u y y = H ( x ) q Switching e + − y ref logic U − U + Funnel Reference signal y ref : R ≥ 0 → R suficiently smooth Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  4. Introduction Relative degree one case Higher relative degree The funnel Control objective Error e := y − y ref evolves within funnel F = F ( ϕ − , ϕ + ) := { ( t , e ) | ϕ − ( t ) ≤ e ≤ ϕ + ( t ) } where ϕ ± : R ≥ 0 → R sufficiently smooth time-varying strict error bound ϕ + ( t ) transient behaviour practical tracking t F ( | e ( t ) | < λ for t >> 0) ϕ − ( t ) Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  5. Introduction Relative degree one case Higher relative degree The bang-bang funnel controller Continuous Funnel Controller: Introduced by Ilchmann et al. in 2002 New approach Achieve control objectives with bang-bang control, i.e. u ( t ) ∈ { U − , U + } x = F ( x , u ) ˙ u y y = H ( x ) q Switching e − y ref + logic U − U + Funnel Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  6. Introduction Relative degree one case Higher relative degree Relative degree one Definition (Relative degree one) > 0 � �� � x = F ( x , u ) ˙ y = f ( y , z ) + ˙ g ( y , z ) u ∼ = y = H ( x ) z = h ( y , z ) ˙ Structural assumption f , g , h can be unknown feasibility assumption (later) in terms of f , g , h and funnel Important property u ( t ) << 0 ⇒ y ( t ) << 0 ˙ u ( t ) >> 0 ⇒ y ( t ) >> 0 ˙ Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  7. Introduction Relative degree one case Higher relative degree Switching logic e ( t ) e (0) ϕ + ( t ) t F ϕ − ( t ) u ( t ) = U + u ( t ) = U − u ( t ) = U + Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  8. Introduction Relative degree one case Higher relative degree Feasibility assumptions y = f ( y , z ) + g ( y , z ) u , ˙ y 0 ∈ R z 0 ∈ Z 0 ⊆ R n − 1 z = h ( y , z ) , ˙ z : [0 , t ] → R n − 1 solves ˙  �  z = h ( y , z ) for some �    �   z 0 ∈ Z 0 and for some y : [0 , t ] → R   �  � Z t := z ( t ) . � with ϕ − ( τ ) ≤ y ( τ ) − y ref ( τ ) ≤ ϕ + ( τ )  �     �    � ∀ τ ∈ [0 , t ] Feasibility assumption U − < ˙ ϕ + ( t ) + ˙ y ref ( t ) − f ( y ref ( t ) + ϕ + ( t ) , z t ) g ( y ref ( t ) + ϕ + ( t ) , z t ) ∀ t ≥ 0 ∀ z t ∈ Z t : U + > ˙ ϕ − ( t ) + ˙ y ref ( t ) − f ( y ref ( t ) + ϕ − ( t ) , z t ) g ( y ref ( t ) + ϕ − ( t ) , z t ) Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  9. Introduction Relative degree one case Higher relative degree Main result relative degree one Theorem (Bang-bang funnel controller, Liberzon & T. 2010) Relative degree one & Funnel & simple switching logic & Feasibility ⇒ Bang-bang funnel controller works: existence and uniqueness of global solution error remains within funnel for all time no zeno behaviour Necessary knowledge: for controller implementation: relative degree (one) signals: error e ( t ) and funnel boundaries ϕ ± ( t ) to check feasibility: bounds on zero dynamics bounds on f and g bounds on y ref and ˙ y ref bounds on the funnel Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  10. Introduction Relative degree one case Higher relative degree Content Introduction 1 Relative degree one case 2 Higher relative degree 3 Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  11. Introduction Relative degree one case Higher relative degree Relative degree r Definition (Relative degree r ) > 0 � �� � = y ( r ) = f ( y , ˙ x = F ( x , u ) ˙ y , . . . , y ( r − 1) , z ) + g ( y , . . . , y ( r − 1) , z ) u ∼ y = H ( x ) y , . . . , y ( r − 1) , z ) z = h ( y , ˙ ˙ Essential property y ( r ) ( t ) << 0 u ( t ) << 0 ⇒ y ( r ) ( t ) >> 0 u ( t ) >> 0 ⇒ Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  12. Introduction Relative degree one case Higher relative degree Hirachical structure of switching logic x = F ( x , u ) ˙ u y y = H ( x ) q Switching e − y ref + logic U − U + Funnels d d d d d t d t d t d t e · · · e ˙ e ( r − 2) e ( r − 1) q 1 q 2 q r − 2 q r − 1 · · · B r − 2 B r − 1 q B 0 B 1 ψ 1 ψ 2 ψ r − 2 ψ r − 1 ϕ + ϕ + r − 1 ( t ) r − 2 ( t ) ϕ + 1 ( t ) ϕ + 0 ( t ) F 1 F r − 2 F r − 1 F 0 ϕ − 0 ( t ) ϕ − 1 ( t ) ϕ − r − 2 ( t ) ϕ − r − 1 ( t ) Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  13. Introduction Relative degree one case Higher relative degree Desired behaviour of block B i ϕ + i ( t ) e ( i ) ( t ) ϕ + i ( t ) − ε + i ≤ ∆+ i F i λ + i max { ψ i ( t ) , λ + i } t min { ψ i ( t ) , − λ − i } − λ − i min { ψ i ( t ) , − λ − i } ≤ ∆ − i ϕ − i ( t ) + ε − i ϕ − i ( t ) ≤ ∆ − i q i ( t ) = true q i ( t ) = false q i ( t ) = true Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  14. Introduction Relative degree one case Higher relative degree Definition of the swichting logic e ( i ) Goal of block B i : � make e ( i ) smaller q i q i +1 q i = true ⇒ than min { ψ i , − λ − B i i } , � make e ( i ) bigger ψ i ψ i +1 q i = false ⇒ than max { ψ i , λ + i } ϕ + i , ϕ − i , ε + i , ε − i , λ + i , λ − i q 1 = true q 1 = false e ( i ) ( t ) ≤ ϕ − i ( t ) + ε − e ( i ) ( t ) ≤ max { ψ i ( t ) , λ + i } + ε + i i q i +1 = true q i +1 = false q i +1 = true q i +1 = false ψ i +1 = ˙ ϕ − ϕ + ψ i +1 = ˙ ψ i +1 = ˙ ψ i ψ i +1 = ˙ ψ i i i e ( t ) ≥ min { ψ i ( t ) , − λ − i } − ε + e ( t ) ≥ ϕ + i ( t ) − ε + i i Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  15. Introduction Relative degree one case Higher relative degree Illustration of switching logic ≤ ∆ − i +1 ϕ + i ( t ) e ( i ) (0) d t e ( i ) ≤ − λ − d ϕ + i ( t ) − ε + i +1 i F i λ + i max { ψ i ( t ) , λ + i } t min { ψ i ( t ) , − λ − i } − λ − i min { ψ i ( t ) , − λ − i } ϕ − i ( t ) + ε − ≤ ∆ + i ϕ − i ( t ) i ≤ ∆ − i q i +1 ( t ) = true q i +1 ( t ) = false q i +1 ( t ) = true q i +1 ( t ) = false q i +1 ( t ) = true q i +1 ( t ) = false q i +1 ( t ) = true q i ( t ) = true q i ( t ) = false q i ( t ) = true Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

  16. Introduction Relative degree one case Higher relative degree Main result Theorem (Bang-bang funnel controller works, Liberzon & T. 2012) Feasibility assumptions: structural assumptions relative degree r smoothness and boundedness of y ref funnels feasible initial error values contained within funnels sufficently smooth funnel boundaries funnel boundaries large enough settling times and safety distance compatible U + and U − large enough ⇒ bang-bang funnel controller works. Theorem (Feasibility) Mild assumptions on F 0 + BIBO of zero dynamics + boundedness of y ref ⇒ feasibility assumption satisfiable with sufficiently large U + and U − Stephan Trenn (joint work with Daniel Liberzon, UIUC) Technomathematics group, University of Kaiserslautern, Germany The bang-bang funnel controller

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend